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Goals for Session

• Introduction to the “Potential Outcomes” or 

“Counterfactual” Model of Causality

• Regression Analysis within the Potential Outcomes 

Framework

• Matching Methods to Handle “Selection on the 

Observables”

PS2030 Political Research and Analysis, Weeks 12-13 2



1.  The “Potential Outcomes” or Counterfactual Model of Causality

• Developed over the past 60 years and attributed to statisticians Donald Rubin 

and Paul Holland (and earlier to Jerzy Neyman in the 1920s)

• Virtually all empirical political analysis can in principle be viewed as an 

attempt to estimate the causal effects of some kind of “treatment” on a 

particular outcome or set of outcomes

– Effect of going to college on voting, effect of joining an IO on war, effect of changing 

electoral laws on number of parties, effects of attending a civic education workshop on 

political knowledge, etc.

• What do we mean by the “causal effect” of a treatment?

– Assume a unit can have two “potential” outcomes, depending on whether it is 

exposed to some treatment D or not

• Y1i is unit i’s value of Y if exposed to the treatment (D=1)

• Y0i is unit i’s value of Y if not exposed to the treatment (D=0)

– So (Y1i - Y0i) is the difference in unit i’s outcome under the two conditions.  It is 

the difference in the outcome at a given point in time for a unit if it was exposed 

to D versus the outcome for that same unit if it was not exposed to D

– We call this quantity the causal effect of the treatment D
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The “Fundamental Problem of Causal Inference”

• Problem:  This quantity is unobservable!!!  We only see one of the two 

values of Y for a given unit --- Y0i for the control group (D=0), and 

Y1i for the treatment group (D=1).  This is what is known as the 

“fundamental problem of causal inference”!!!  

– We don’t know what the control group would have looked like at a 

given point in time if it had gotten the treatment (Y1i| D=0), and we 

don’t know what the treatment group would have looked like at a given 

point in time if it had not gotten the treatment (Y0i| D=1).  These 

“counterfactual” outcomes are unobserved, so we cannot directly 

calculate the causal effect of the treatment.

 Treatment Group   Control Group

Treated  Y1i|D=1  Observed  Y1i|D=0  Counterfactual

Untreated Y0i|D=1 Counterfactual Y0i|D=0  Observed
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• Can formalize this idea as an expression for observed Yi:

• 1 𝑌𝑖 = 𝑌1𝑖𝐷𝑖 + 𝑌0𝑖(1 − 𝐷𝑖)

• which says that we observe only the potential outcome associated with the 

treatment condition for the treatment group, and only the potential outcome 

associated with the control condition for the control group

• Some algebraic manipulation in (1) gives two alternative expressions:

• 2 𝑎 : 𝑌𝑖 = 𝑌𝑜𝑖 + 𝑌1𝑖 − 𝑌0𝑖 𝐷𝑖 

• 2(𝑏): 𝑌𝑖 = 𝑌1𝑖 − 𝑌1𝑖 − 𝑌0𝑖 (1 − 𝐷𝑖) 

• which says a) observed Y is equal to the unit’s potential outcome associated 

with the control condition, plus the unit’s treatment effect if it were treated; 

or b) observed Y is equal to the unit’s potential outcome under the   

treatment condition, minus the unit’s treatment effect if it were not treated

• But we don’t observe any unit’s treatment effect!!!! 

• Nearly all (modern) empirical social science research is concerned with 

developing ways of identifying and estimating the unobservable quantity     

(Y1i - Y0i).
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Treatment Effects and Observed Treatment-Control Group Differences
• We can start with the average difference between treated and control units on the 

outcome variable: E(Y1i|D=1) - E(Y0i|D=0) 

• This is NOT an unbiased estimate of the average treatment effect (ATE) 

      ATE = E(Y1i-Y0i) = E(Y1i)-E(Y0i)

• The “Average Treatment Effect” (ATE) can be decomposed as:

• This says that the average treatment effect is composed of three terms:

– the observed difference between average Y for treatment and control units (line 1)

– the (unobserved) difference between what the treatment group would have looked 

like in the absence of treatment and what the control group did look like in the 

absence of treatment (line 2)

– The (unobserved) difference between what the average treatment effect was for 

treatment units and what the average treatment effect would have been for control 

units, had they been treated (weighted by the proportion of control units) (line 3)

(3)   E(Y1i - Y0i ) = D(ATE)=E(Y1i | D = 1)- E(Y0i | D = 0)

                                          - E(Y0i | D = 1)- E(Y0i | D = 0)

                                          - (1-Pr(D=1))*[E(Di | D = 1)- E(Di | D = 0)]
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• Alternatively: Observed Differences, Treatment v. Control =

ATE (Average Treatment Effect) +

Differences in Potential Control Outcome (Y0i) between Treatment and 

Control Groups +

Differences in Treatment Effects between Treatment and Control, 

weighted by Proportion in Control Group

• This is relevant when you are concerned about “average treatment effects” 

as a substantively important quantity

• Other potentially important quantities:

– ATT (Average Treatment Effect on the Treated):  what is the effect of 

treatment on units that take up the treatment?

– ATC (Average Treatment Effect on Control):  what is the effect of 

treatment on units that do not take up the treatment, but theoretically could 

take up the treatment?

• These quantities could be different (“heterogeneous” treatment effects); 

we’ll often simplify and assume ATE=ATT=ATC. Then line 3 in equation 

(3) would drop out.
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• We observe the difference between the treatment group and the 

control group:  (Y1i|D=1) - (Y0i|D=0) 

• If a (potential) causal effect is constant for treatment and control 

groups, then, following equation (3):

 E((Y1i|D=1) - (Y0i|D=0)) = E((Y1i|D=1) - (Y0i|D=1)) + E((Y0i|D=1) - (Y0i|D=0))

Observed Group Difference      =                 “Treatment Effect”              +        “Baseline Selection 

Bias”
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E((Y1i|D=1) - (Y0i|D=0)) = E((Y1i|D=1) - (Y0i|D=1))    +   E((Y0i|D=1) - (Y0i|D=0))

Observed Difference              =  “Treatment Effect”                    +  “Baseline Selection Bias”

• This means that the observed difference between the treatment and 

control groups is a function of the (unobserved) causal effect of the 

treatment on units that get the treatment PLUS the (unobserved) 

difference in the “no-treatment” outcome between the treatment and 

control groups.  

• The latter term is the difference in what the treatment group would 

have looked like in the absence of treatment and what the control 

group did look like in the absence of treatment

• Whenever the “selection bias” term is zero, or whenever               

E(Y0i|D=1) = E(Y0i|D=0), then observed differences between 

treatment and control groups = the causal effect of the treatment
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Randomization Solves the Selection Bias Problem!

• When the “baseline selection bias” term is zero, i.e. when E(Y0i|D=1) = E(Y0i|D=0), 

then observed differences between treatment and control groups will equal the causal 

effect of the treatment

• When will this occur?  If treatment and control groups are randomly assigned, then 

their baseline potential “non-treatment” outcomes are equalized.  The observed 

control group outcome will be (statistically) the same as what the observed treatment 

group’s outcome would have looked like had it not received the treatment.  (And the 

observed treatment group’s outcome will be (statistically) the same as what the 

observed control group’s outcome would have looked like had it actually received 

treatment too)

• In other words, under randomization: 

    E(Y0i|D=1) = E(Y0i|D=0) and E(Y1i|D=1) = E(Y1i|D=0)

     with counterfactual potential outcomes in boldfaced type

• We can say that, under randomization, treatment status and potential 

outcomes are independent; treatment assignment is “ignorable”: 

     Y0, Y1 ⊥D
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• How does this work? Randomization equates the treatment and control groups 

on all variables --- both observed and unobserved --- that could have produced 

observed baseline differences between the groups. 

• This means that we can identify the ATE easily, since randomization 

guarantees first, that there is no baseline “selection bias” differences between 

treatment and control groups, i.e., the control group’s outcome is exactly the 

same as what the treatment group’s outcome would have been in the absence 

of treatment; and

• Second, the expected treatment effect for treated units will be the same as the 

expected treatment effect for control units would have been had they been 

treated.  So equation 3 (slide 6) reduces to a comparison of treatment and 

control group means, which is the ATE as well as the ATT and the ATC

• This is the beauty of random assignment for causal inference!  We can use the 

control group mean as a perfect proxy for what the treatment group mean 

would have been in the absence of treatment; and we can use the treatment 

group mean as a perfect proxy for what the control group mean would have 

been had it received treatment.  Thus randomization is a very attractive 

identification strategy if it is possible to implement!
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Selection Bias in Observational Research

• In non-experimental or “observational” research, we face the ever-present 
possibility (probability) of selection bias, that the treatment and control 
groups will have different baseline (non-treatment) outcomes due to pre-
existing differences on relevant observed and/or unobserved variables

• Different methods exist for attempting to identify causal effects in the 
presence of these biases, some of which we have covered already but not 
using the same terminology or formal framework for causal inference

• Methods for controlling for selection biases due to observed variables:
– Multivariate regression and “regression adjustment”

– “Matching” and “Propensity Score Matching” 

• Methods for controlling for selection biases due to unobserved variables:
– Instrumental Variables and “Natural Experiments”

– “Difference in Difference” and longitudinal panel data models

– Heckman selection models

– Regression Discontinuity Designs (RDD)

• “We will only have time to discuss some of these methods”

• For more, see PS2702 Causal Inference and PS2701 Longitudinal Analysis
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Example:  Potential Outcomes in Non-Experimental Research

• E(Y|D=1)= 9.33   E(Y|D=0)=0  so Observed Difference between Treatment/Control=9.33

• Colored cells are unobserved counterfactuals

• TRUE ATE=E(Y1-Y0)=E(Y1)-E(Y0)=6.875

• TRUE ATT=E(Y1-Y0|D=1)=9.00

• Baseline Selection Bias: E(Y0|D=1)-E(Y0|D=0)=.3333

• Differential Treatment Effect for D=1 and D=0, is 3.4 (since ATT=9.0 and ATC=5.6)

• ATE=(Observed Difference-Baseline Selection Bias-(1-P(D=1)*Differential Treatment Effect, 

D=1, D=0)=9.333-.333-(.625*3.4)=6.875

• ATT=(Observed Difference-Baseline Selection Bias)=9

• Problem:  All of these effects are unobservable!  We only observe Y, D, and X! How can 

we identify and estimate the ATE and/or ATT given the observed data?
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Unit X Y0 Y1 D Y Treatment Treatment Treatment

Effect Effect, D=1 Effect, D=0

1 0 1 0 1 0 -1 -1

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 1 0 14 0 0 14 14

6 1 0 14 0 0 14 14

7 1 0 14 1 14 14 14

8 1 0 14 1 14 14 14

MEAN 0.125 7 0.375 3.5 6.875 9 5.6
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• Selection bias will not be a problem whenever all relevant variables that are 

responsible for the baseline potential “non-treatment” outcome differences 

are measured and incorporated into the model:                                             

E(Y0i|D=1, Xi) =  E(Y0i|D=0, Xi)

• If we can assume that the Xs that would equate baseline “non-treatment 

outcomes” are observed variables, we call this “selection on the observables”, or 

that treatment assignment is “ignorable given the Xs”:  Y0, Y1 ⊥D|X.  

• This is the “identifying assumption” that allows estimation of the causal 

effects of interest (and which certainly could be wrong).

– It means that we attempt to make the treatment and control groups equal on 

potential outcomes Y0 and Y1 by balancing the groups on “confounding” X 

variables, and then we observe differences in Y among the treatment and control 

groups that have been equated on X.

– In regression, we “adjust” for confounders, variables that may also determine Y

– In matching, we balance on confounders that may also determine D, and we say 

that after balancing on the Xs, treatment assignment is “as good as random”. 
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• In multiple regression, we attempt to ensure that E(Y0i|D=1)=E(Y0i|D=0) by 

“controlling” or “adjusting” for all observable X that may be related to both D and Y 

and bringing them into the equation.

• Assuming constant effects of X on Y in both treatment and control groups, we obtain 

the familiar regression set up:

• 𝑌𝑖 = 𝛼0 + 𝜌𝐷𝑖 + 𝛽𝑋𝑖

• We can also express this equation in terms of average differences between treatment 

and control groups:

• 𝐸 𝑌𝑖 𝐷 = 1 = 𝛼0 + 𝜌 + 𝛽 ത𝑋𝐷=1

• 𝐸 𝑌𝑖 𝐷 = 0 = 𝛼0 +  𝛽 ത𝑋𝐷=0

• 𝐸 𝑌𝑖 𝐷 = 1 − 𝑌𝑖 𝐷 = 0 = 𝜌 + 𝛽( ത𝑋𝐷=1 − ത𝑋𝐷=0)

This is *exactly* what we did when we examined dummy variable regression!!  (In fact, this 

procedure is called “covariance or regression adjustment”). If baseline selection bias is 

controlled by bringing X into the analysis in this fashion (i.e., if the identifying assumptions 

of non-ignorable treatment assignment and other assumptions to be noted are correct), 

then ⍴ is the causal effect of the treatment!  That is multiple regression!
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Regression Adjustment in Practice

• This also suggests a more elaborate method of estimating causal effects via 

regression adjustment 

• Allow separate regressions for treatment and control observations, as we did 

with Causal Mediation Analysis

• Then, for each unit, calculate a predicted outcome, given treatment from 

their values on the covariates using the treatment group regression model, 

and a a predicted outcome, given control, using the control group 

regression model

• 𝑌𝑖 𝐷 = 1 = 𝛼0𝑡 + 𝛽𝑡𝑋

• 𝑌𝑖 𝐷 = 0 = 𝛼0𝑐 + 𝛽𝑐𝑋

• Use these two predicted outcomes as estimates for each individuals’ potential 

outcomes Y1i and Y0i 

• Take the difference for each individual, and average across the sample
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Regression Adjustment Example
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Our Example
Unit X Y0 Y1 D Y Treatment Treatment Treatment

Effect Effect, D=1 Effect, D=0

1 0 1 0 1 0 -1 -1

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 1 0 14 0 0 14 14

6 1 0 14 0 0 14 14

7 1 0 14 1 14 14 14

8 1 0 14 1 14 14 14

MEAN 0.125 7 0.375 3.5 6.875 9 5.6

TRUE ATE=E(Y1-Y0)=E(Y1)-E(Y0)=6.875

Mean X, Treatment=.67
Mean X, Control=    .40

Does regression or regression adjustment recover the causal effect?
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• reg Y D

•

•       Source |       SS       df       MS              Number of obs =       8

• -------------+------------------------------           F(  1,     6) =    7.50

•        Model |  163.333333     1  163.333333           Prob > F      =  0.0338

•     Residual |  130.666667     6  21.7777778           R-squared     =  0.5556

• -------------+------------------------------           Adj R-squared =  0.4815

•        Total |         294     7          42           Root MSE      =  4.6667

•

• ------------------------------------------------------------------------------

•            Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

• -------------+----------------------------------------------------------------

•            D |   9.333333   3.408051     2.74   0.034     .9941318    17.67253

•        _cons |          0   2.086997     0.00   1.000    -5.106697    5.106697

• ------------------------------------------------------------------------------

•

• . reg Y D X

•

•       Source |       SS       df       MS              Number of obs =       8

• -------------+------------------------------           F(  2,     5) =    6.25

•        Model |         210     2         105           Prob > F      =  0.0436

•     Residual |          84     5        16.8           R-squared     =  0.7143

• -------------+------------------------------           Adj R-squared =  0.6000

•        Total |         294     7          42           Root MSE      =  4.0988

•

• ------------------------------------------------------------------------------

•            Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

• -------------+----------------------------------------------------------------

•            D |          8   3.098387     2.58   0.049     .0353435    15.96466

•            X |          5          3     1.67   0.156    -2.711746    12.71175

•        _cons |         -2    2.19089    -0.91   0.403    -7.631863    3.631863

• ------------------------------------------------------------------------------

REGRESSION OF Y ON D:      β1= 9.33             WRONG!
REGRESSION OF Y ON D, X:  β1= 8.00 β2=5     WRONG!

(9.33-5*.2667)=8
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Regression Adjustment

PS2030 Political Research and Analysis, Weeks 12-13

Regression slope of Y on X in control group=0

Regression slope of Y on X in treatment group =14

Predicted Y in control condition: 0
Predicted Y in treatment condition:
 0 if X is 0; 14 if X is 1

So:  Average Treatment 
Effect (ATE)=
(4*0 + 4*14) /8 = 7.0

Average Treatment Effect on 
Treated (ATT)= 28/3=9.333

Average Treatment Effect on 
Control (ATC)= 28/5=5.60
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Problems with Regression and Regression Adjustment

• The unobservables problem: regression and regression adjustment are not able 

to handle selection biases due to unobservables

• The functional form problem:  Regression assumes that the Xs enter the 

equation in a linear, additive fashion and that the data are drawn from a 

probability distribution of a given form (usually “normal”).  This may not be 

the case.  X could affect both D and Y in any number of ways that do not 

follow an easily predetermined form, and imposing the form on slide 16 may 

not fully “control” for X in the estimation of the treatment effect ⍴.

– For example, if exposure to civic education is D, knowledge is Y and group 

memberships is X, can we assume that Y is necessarily a linear function of X?  

Maybe threshold of 2 groups is necessary, or step effects such that 5-6 groups 

really adds much more knowledge than 1 or 2?  If so, then multiple regression 

and regression adjustment will not sufficiently control for X! 
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• The common support problem: Regression (multiple regression (and 

regression adjustment) says that, at every level of Xi, we will see a 

difference on Y between treatment and control units.  But there is 

no guarantee, using multiple regression, that there will be any 

comparable control units for all treated units at each level of Xi

– In fact, the larger the difference between the means of the 

covariate X for the treatment and control groups, the more that 

we may be extrapolating beyond the region of common support 

by using regression (see the birthweight example)

• The functional form problem and the common support problem are the major 

motivations behind the use of “matching” methods for causal 

inference as opposed regression! 
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Matching

• Basic idea:  match each treatment unit i with a control unit j that has the same 

characteristics on X, and calculate the average differences in Y for all of these 

“matched pairs” to estimate the causal effect of interest (ATT, ATC, ATE)

• For example:

• ∆ 𝐴𝑇𝑇𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 =
1

𝑁𝐷=1
σ 𝑌1𝑖 𝐷 = 1, 𝑋 = 𝑥 − 𝑌0𝑗 𝐷 = 0, 𝑋 = 𝑥

• Matching allows the relationship between X, D and Y to have any kind of 

functional forms.  Whatever the form is, we find matches between treatment 

and control units at a given level of X and use that control unit as the 

counterfactual “no-treatment” proxy for the treated unit

• Matching (in this fashion) also ensures common support; if no suitable 

control unit is found for a given treated unit at some level of X, the treated 

unit can be discarded and not considered further

• Assumption for ΔATTMatching to correctly estimate the “true” ATT?  As in 

regression, that treatment assignment is “ignorable given the Xs”:  Y0⊥D|X 

(for ATT; Y0, Yi⊥D|X for ATE) 
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• Most straightforward approach to matching: find the control unit that exactly matches 

the treated unit on all relevant covariates.  So, match each treated male with a control 

male, each treated female with a control female, each treated young male with a control 

young male, each treated young minority male with a control young minority male, etc.

• Big problem: What happens as multiple X variables determine D? How do we find 

exact matches for a treatment unit with values Xi=xi for all of the Xs?  If D is exposure 

to civic education, for example, can we be certain that we will have a highly interested, 

high media exposure, urban, young minority male who did not attend a workshop for a 

given treated individual with those same characteristics?  If not, we have no 

counterfactual control unit for that treatment person.  As more and more Xs affect D, 

dimensionality problem becomes even more acute.

• If there are 20 X variables, for example, and even if each of them is dichotomous, there 

will be 220 , or 1,048,576 possible cells or combinations of the Xs, 

• Breakthrough:  Rosenbaum/Rubin’s 1980s work on “Propensity Score Matching” 

•  PSM:  constructs a comparison group by modeling the probability of all units being 

treated on the basis of a full set of observed characteristics, and then matches each 

treatment unit with the control unit or units that (counterfactually) had the closest 

probability of being treated for purposes of estimating the ATT  

• Rosenbaum and Rubin show that matching on P(D=1) is as good as matching on X
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Propensity Score Matching

• The propensity score model, given exact matching of treated case i with 

control case j on P(D=1|Xi):

• ∆ 𝐴𝑇𝑇𝑃𝑆𝑀 =
1

𝑁𝐷=1
σ 𝑌1𝑖 𝐷 = 1, 𝑃(𝑌 = 1|𝑋) = 𝑥 − 𝑌0𝑗 𝐷 = 0, 𝑃(𝑌 = 1|𝑋) = 𝑥

• There are many alternative ways of aggregating and weighting control 

unit(s) to arrive at the best counterfactual for a given treatment unit, so a 

more general way to express the PSM model is:

• ∆ 𝐴𝑇𝑇𝑃𝑆𝑀 =
1

𝑁𝐷=1
σ 𝑌1𝑖 𝐷 = 1, 𝑃(𝑌 = 1|𝑋) = 𝑥 − 𝜔𝑌0𝑗 𝐷 = 0, 𝑃(𝑌 = 1|𝑋) = 𝑥

• where ω is the weighting mechanism for aggregating the control unit 

observation(s) that will serve as the match for a given treatment unit

• Identifying assumption, as in regression and exact matching:

– Conditional on the Xs, treatment assignment is ignorable, or “as good as random”. 

– Assumption of Y0⊥D|X for ATT, Y0, Y1⊥D|X for ATE  
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Steps in Propensity Score Matching

1. Estimate propensity score P(D=1|X) for all units using logit/probit

2. Define the region of “common support”, i.e., the region where the 

distributions of propensity scores for treatment and control units overlap

3. Construct a matched treatment and control sample using the propensity 

score in one of several ways (nearest neighbor, etc.).  This corresponds to 

the ω on the previous slide

4. Conduct tests of “balance” between the treatment and control groups on all 

X variables.  If treatment assignment is ignorable, given the propensity 

score, then treatment and control groups should have nearly identical levels 

of Xs at similar values of the propensity score.  If not, repeat steps 1-3.

5. Conduct post-matching analysis to arrive at ATT (or ATE).  This can be 

done in a variety of ways:

– Calculate average differences on Y between the matched treatment and control pairs

– Stratify the sample into blocks on the propensity score, estimate effects within blocks using 

regression etc., aggregate via weighting by the size of the blocks 

– Weighted regression, with the inverse of the propensity score serving as the weights
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Step 1:  Estimate the Propensity Score

• Run a regression (probit or logit) that has the probability of receiving 

treatment on the left hand side, and the covariates that determine selection 

into the treatment on the right hand side (i.e., XB):

• 𝑃 𝐷 = 1 = Φ 𝑋𝐵  probit 

𝑃 𝐷 = 1 =
𝑒𝑥𝑝𝑋𝐵

1+𝑒𝑥𝑝𝑋𝐵  logit 

• The propensity score is just the predicted probability of D=1 that you get 

from this regression.  (Some methods recommend using the linear term 

(either the z-score or the logit)).

• Start with a simple specification (e.g. just linear terms). Then, depending on 

the remaining imbalance on the Xs that exists once you compare treatment 

and controls at similar levels of P(D=1), modify the propensity score 

regression by including squared and/or interaction terms, or new variables.

• You want parsimony but also a model that fully satisfies the requirements of 

“ignorable treatment assignment” once the propensity score is controlled. Be 

relatively liberal in including (pre-treatment) covariates.
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Step 2:  Define the Region of  Common Support

Once the propensity score is calculated, eliminate control units with lower 
propensities to be treated than the lowest treated unit, and eliminate treatment 
units with higher propensities to have been treated than the highest control unit
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1.  Nearest Neighbor Matching

– Select for each treated individual i the control individual j with the smallest 

propensity score distance from individual.  Then discard cases i (and possibly j) 

from further consideration, repeat until all treated units have a matched j control

– where 𝜔 = 1 if 𝑃𝑖 − 𝑃𝑗 = 𝑚𝑖𝑛𝑘𝐷=0 𝑃𝑖 − 𝑃𝑘 ; 0 otherwise 

– If Pi=Pj, nearest neighbor matching is exact matching on the propensity score

– Can potentially discard many cases if control units not needed for given matches 

(but maybe not a real problem given the increased precision of the ATT estimates)

– Can lead to some very poor matches (since “nearest” doesn’t mean “near”)

– Can also specify “k:1” matching where multiple control units (N=k) can serve as 

matches for a given treatment unit. 

– Can match without replacement, or “with replacement” so control units can serve 

as matches for multiple treatment cases; this complicates standard errors

PS2030 Political Research and Analysis, Weeks 12-13

Step 3:  Construct Matched Treatment-Control Sample 
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2.  Propensity Score Weighting

– An alternative and very commonly utilized procedure is to use the 

propensity scores as weights, similar to sampling weights in regular 

regression or other analyses.

– For the ATE, define the weights as:

– 𝜔𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =
1

𝑃(𝐷=1)
 and 𝜔𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =

1

1−𝑃(𝐷=1)

– Treated units with high P(D=1) are down-weighted, control units with 

high P(D=1) are up-weighted

– For the ATT, define the weights as:

– 𝜔𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1 and 𝜔𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =
𝑃(𝐷=1)

1−𝑃(𝐷=1)

– Control units with high P(D=1) upweighted via the denominator, then 

matched to treatment group via the numerator

– Advantages: Easy to implement and uses all the cases in the sample!
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Step 4:  Check for Covariate Balance in the Matched Sample

• Whatever method is chosen to produce the matched sample, need to 

check on the quality of the matches by examining covariate balance 

between the treated and control units before and after the matches 

were constructed.  

• If successful, matching on the propensity score should produce a 

matched sample where the treated and control units have similar 

distributions on all covariates. In that case, we are closer to fulfilling the 

“ignorable treatment assignment” assumption, in that, given the 

propensity score, treatment assignment is “as good as random” (at least 

on the observable covariates included in the propensity score 

calculation)

• If unsuccessful, need to re-specify the propensity score and/or the 

matching method and/or add the covariate to the statistical analysis 

later on to further “control” for its effects, over and above its inclusion 

in calculating the propensity score 
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• Simple way to do this is to conduct t-tests of means pre/post matching and 

see whether the matched sample is completely balanced.  Commonly utilized, 

though some argue that balance is not really a statistical inference issue – it is 

a sample property, so t-tests of significance are not technically relevant. Also, 

since we are potentially throwing out a lot of data in the matching process, we 

lose statistical power for such tests.  This controversy is not yet resolved.

• Rosenbaum and Rubin (1985) recommend a related measure, the standardized 

difference in means or “standardized bias” for the treatment and control groups:

•
ത𝑋𝑡− ത𝑋𝑐

𝜎𝑡

• There should be no standardized biases greater than .25, and ideally there 

should be at least 95% reduction from the pre-matching levels

• Note: need to use *same* matching scheme in balance checking as was done 

to create the matches in the first place
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Step 5:  Post-Matching Analysis
• Once a successful matched (or weighted matched) sample has been created, the 

analysis of the outcome can then proceed.

• After nearest neighbor matching: pooled t-test between treatment and control 

groups in the matched sample on the outcome variable; t-test between matched 

treatment/control group pairs on the outcome; regression of outcome variable 

on treatment, controlling for the propensity score and/or any X covariates 

which failed the balance test in step 4.

• After propensity score weighting, estimate regression models with the weights 

calculated above used in same way as a sampling weight

– ATE Estimate for our hypothetical example using weighting?  

• β1= 7.00  (True=6.875)

– Standard errors in all weighting models subject of much debate – how 

much do we take the uncertainty in the propensity score estimation and 

matches into account? We won’t go into these controversies

– STATA modules for propensity score analysis: 

teffects psmatch, teffects ipw for inverse probability weighting
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Example with Propensity Score Weighted Regression

PS2030 Political Research and Analysis, Week 12

• reg Y D [weight=ipw]

• (analytic weights assumed)

• (sum of wgt is   1.6000e+01)

•

•       Source |       SS       df       MS              Number of obs =       8

• -------------+------------------------------           F(  1,     6) =    3.00

•        Model |          98     1          98           Prob > F      =  0.1340

•     Residual |  195.999999     6  32.6666664           R-squared     =  0.3333

• -------------+------------------------------           Adj R-squared =  0.2222

•        Total |  293.999999     7  41.9999998           Root MSE      =  5.7155

•

• ------------------------------------------------------------------------------

•            Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

• -------------+----------------------------------------------------------------

•            D |          7   4.041452     1.73   0.134    -2.889076    16.88908

•        _cons |  -8.88e-16   2.857738    -0.00   1.000    -6.992633    6.992633

• ------------------------------------------------------------------------------

•

TRUE ATE=E(Y1-Y0)=E(Y1)-E(Y0)=6.875

logit D X
predict pscore
g ipw=1/(pscore) if D==1
replace ipw=1/(1-pscore) if D==0
reg Y D [weight=ipw]
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• All of these models have been developed for dichotomous treatments.  Recent 

work extends these ideas to cases where the treatment variable is ordinal or 

continuous . See Yanovitsky et al. (2005) and Imai and van Dyk (2004) for 

alternatives based on multiple propensity scores for each category, ordinal 

logit/probit propensity score weighting, and other models.

• All of these models – indeed, all of the discussion of causal inference so far, 

depends on one additional assumption known as the Stable Unit Treatment 

Value assumption (SUTVA).  SUTVA means that the potential outcomes of 

one unit are unaffected by the treatment status of other units.  So my 

potential outcome under treatment (Y1) or control (Y0) does not depend on 

whether you or anyone else has been assigned to treatment or control.  This 

would be violated in cases where, for example, there are “spillover effects” 

of treatment, such that having a lot of treated units in a given area or social 

network affects the potential outcomes of those untreated units.  Much 

work is currently being done on the estimation of causal effects with 

“interference” between units; see one influential political science treatment 

in Sinclair, McConnell, Green (AJPS 2012).

PS2030 Political Research and Analysis, Weeks 12-13
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