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Models for Non-Binary, Non-Continuous Outcomes

• Many other kinds of non-continuous variables aside from the 

dichotomous or binary variables that we have considered so far with 

logit and probit models

– Ordinal Outcomes:  more than two ranked categories without necessarily equal 

distance between the categories 

– Multinomial Outcomes:  more than two unranked categories

– Count Outcomes:  more than two non-negative integer categories

– Censored Outcomes:  continuous up to (or down to) a threshold

• We will have time only to discuss models for ordinal variables, but all 

of the other topics will be covered in Maximum Likelihood

• All involve extensions of either (or both) the non-linear specification 

or the latent variable framework for modeling dichotomous 

dependent variables via logit and probit regression
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Modeling Ordinal Outcomes

• Ordinal variables have multiple categories that can be ranked

– Social class:  Low, Medium, High

– 4-5 category “Strongly Agree” to “Strongly Disagree” survey questions

– Outcomes of civil conflict:  peace, low-level conflict, civil war

• Can you treat these variables as interval and estimate via OLS?

– NO!  OLS assumes equal distances between the categories, as in “every unit 

change in X brings about a β unit change in Y”.  The units in Y must be equal, 

i.e., β at one point in the scale must be the same change as β at another point, 

and this is not necessarily the case with ordinal variables

– Actually, the scale categories for ordinal variables are completely arbitrary 

anyway so the “unit change” idea is pretty meaningless.  We could, e.g., assign a 

value of -400 to “low class”, 6,225 to “middle class”, and 4,500,823 to “high 

class”, or we could assign “1’ “2” “3”.

• So we estimate instead with “ordered probit” or “ordered logit” and 

ML methods 
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Ordered Probit

• Ordered Probit is a straightforward extension of the latent variable 

framework to take ordered categories into account.  Instead of only 

one τ threshold for Y* at 0 to distinguish observations of “0” or “1”, 

we allow for multiple τ thresholds that distinguish observations of 

“category 1”, “category 2”, “category 3”, etc.

•  As in dichotomous probit, model:

• So Y* is continuous but unobserved.  We map the observed variable 

Yi to Y* via the “measurement equation” that says if Y* is above a 

certain threshold, observed Y will be 1; if Y* is above the next 

threshold, observed Y will be 2; above the next threshold, observed 

Y will be 3, and so on, depending on the number of categories
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• Assume a three category ordinal variable

• Assign the zero threshold (τ0) to be negative infinity (-∞) and the 

threshold for the last category (τ3) to be positive infinity (∞) 

• Then the full model is:

with measurement equations
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• As with dichotomous probit, Y* is unobserved so cannot use OLS

• We also need to make assumptions about the error term ε.  If we 

assume normality, we arrive at the “ordinal probit” specification.  If 

we assume logistic distribution, we arrive at “ordinal logit” (though 

we will also arrive at ordinal logit by extending the non-linear 

probability framework a little later)

• Idea:  XB takes Y* to some expected value, and then, depending on 

the size of the normally distributed error and whether it takes Y* past 

given thresholds, the observed Y will be 1, 2, or 3.  We can use 

normal curve properties to calculate the probability, given XB, of 

obtaining an error term sufficiently large to put Y* over the τ1 

threshold, and over the τ2 threshold, which would result in an 

observed Y of 2 or 3 respectively. Otherwise observed Y will be 1.
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• Given XB, if ε is large enough, it will put even a very low Y* above the τ1 or τ2 

thresholds; thus Y=2 or 3

• Given XB, if ε is small enough, it will put even a very high Y* below the τ2 or τ1 

thresholds; thus Y=2 or 1
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• The probability of observing, e.g., a “1” is:

• 𝑃 𝑌 = 1  = 𝑃(𝜏0 ≤ 𝑌∗ ≤ 𝜏1)

• 𝑃 𝑌 = 1 𝑋 = 𝑃 𝜏0 ≤ 𝑋𝐵 + 𝜀 ≤ 𝜏1

• 𝑃(𝑌 = 1|𝑋) = 𝑃(𝜏0 − 𝑋𝐵 ≤ 𝜀 ≤ 𝜏1 − 𝑋𝐵)

• What is the probability that a normally distributed error term lies 

between two points?  It is the difference in the cumulative probability 

associated with each of those points – like the distance between two 

z-scores.

• Intuitively:  XB puts Y*, e.g., at 2.  If τ1 is, say, .5 , then we know that 

anytime there is an error term less than (.5-2=)-1.5, the person will be 

under the first threshold.  Can there be a error term that will put the 

case under the τo ?  No, would have to be smaller than negative 

infinity!  So we say that the probability of being in category 1 is the 

probability of the error term being less than (τ1 – XB ).
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• Formally:

• The probability of observing a 1 is the proportion of the CDF (the 

cumulative normal distribution) associated with the first threshold 

minus XB, minus the CDF associated with the zero threshold 

minus XB.  We know that the latter term must be 0, since the zero 

threshold is negative infinity and therefore has a CDF of 0. 

• So:

• The probability of observing a 1 is the proportion of the CDF 

associated with the first threshold minus XB.  This gives the 

probability of obtaining an ε large enough to push Y* over the 

negative infinity threshold but not so large as to push Y* over τ1.
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• Wherever XB takes Y*, an error term small enough will carry it below τ1 and 

produce an observed Y or 1.  This occurs with probability= Ф(τ1 – XB).  If 

XB=4 and τ1 equals 3, then error terms less than -1 will put Y* below the 

threshold, and Y=1.  The probability of this occurring in any normal 

distribution is Ф (-1), or .16.

• Our example:  XB=2, τ1 =.5, then P(Y=1)= Ф (-1.5)=.067.  So there is a 6.7% 

chance of observing Y=1 for a person with XB at 2 and τ1 at .5. 

P(Y=1|X)=.067

• We can similarly work out the Ps associated with observing Y of 2 and 3
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• which is the difference in the CDF associated with each of the points

• Take case of XB=2 again.  If τ2 = 3, then the chance of being in 

category 2 is equal to the probability the error term is less than (3-2= 1) 

and greater than (.5-2= –1.5), which is the cut-point for getting into 

category 1.  So Y=2 is whenever the error term is between –1.5 and 1.

• Verify this on the previous slide.  We have the CDF associated with τ2 

in a normal distribution with XB as the mean, so it is the CDF 

associated with (τ2 – XB) in the standard normal distribution.  That 

gives P of being at or below the τ2 threshold, or at or below 3.  This is 

the cumulative probability of P(<=2). We then subtract from that the P of 

being in category 1, which is Ф(τ1 – XB), to get P(Y=2) exactly.

• Ф(1)=.841    Ф(-1.5)=.067, so P(Y=2|X)=.774
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• Which is the probability of getting an error term large enough to put 

Y* over the τ2 threshold but not so large to put Y* over the τ3 

threshold.  Since τ3 is positive infinity, it is impossible to get an error 

term larger, so we only really need to know whether the error term is 

greater than (τ2 -XB).  In terms of cumulative probabilities, the 

P(Y=3|X) would be the entire CDF minus the proportion of the 

CDF associated with P(Y<=2).

• Our example:  P(Y=3|X)=1-.841 = .159

• We can generalize all the probabilities as:
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ML Estimation of the Ordered Probit Model

• Given

• we want to find the B, such that they maximize the joint probability of 

having observed the 1s, 2s, and 3s that we did observe in the sample

• So if case 1 is in category 1, we use the P for M=1 in the likelihood, if 

case 2 is in category 3, we use the P for M=3, etc.

• We find the τ and the β that maximize:
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• Can generate predicted P(Y=1), P(Y=2), P(Y=3) for all cases, 

depending on the level of X.  These will yield non-linear P relationships 

with X for each outcome

• Display normal(.42-.244*4) is P(Y=1) is .29 for a person in 4 groups

• Display normal(1.65-.244*4)-normal(.42-.244*4) is P(Y=2) is .45 for a 

person in 4 groups

• Display 1- normal(1.65-.244*4) is P(Y=3) is .25 for a person in 4 groups
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Additional Interpretations and Model Fit

• Individual significance tests based on LR or Wald

• Summary statistics for model and model comparisons

– LR tests of nested models

– McFadden’s R-squared, McKelvey-Zavoina

– Count and Adjusted Count R-squared

– AIC and BIC entropy measures

• Use “MCHANGE” for changes in P(Y=M) as X changes by 1 unit, 1 

standard unit, or marginal change

• Plot effects for better visualization

– Effects of changes in variables on probability of being in categories 1/2/3 etc

– Marginal effects of variables on all categories (mchangeplot in SPOST/STATA)

• Can calculate effects on Y* from either a unit change or a standard unit 

change in X using “listcoef”

– Use standardized Y* given that variance of Y* is affected by inclusion or 

exclusion of sets of variables (as we discussed in context of binary outcomes)
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Mchange and Mchangeplot for a Multivariate Model
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Ordered Logit

• We can arrive at the same kind of probability model for ordered 

categorical variables by extending our earlier logit framework

• In the binary case we modeled the odds or the probability that a 

person/case is in category 1 versus category 0

• In the ordered case, we model the odds for the cumulative probability 

that a case is in category 1 or below, category 2 or below, etc.

• For a three category variable (low (1), Medium (2), High (3)):

• We say that the:

–  cumulative probability of being in category 1 is P(Y=1)

– cumulative probability of being in category 2 is P(Y=1)+P(Y=2)

– cumulative probability of being in category 3 is P(Y=1)+P(Y=2)+P(Y=3)=1

• If J is the number of categories, j are the individual categories j=1…J, 

and m is category m, then:
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• So if 3 categories, we get 2 cumulative probabilities P(Y<=2), P(Y<=1)

• If these cumulative probabilities are non-linear in relationship to X, 

bounded by 0 and 1 with Xs being unbounded, we can arrive at the 

same non-linear specification as in binary logit
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• Why is curve sloped downward?  We assume a positive relationship 

with X, that means that as X increases, the cumulative probability of 

being in category 1 decreases, and the cumulative probability of being 

in category 2 decreases as well (because Y will be higher)

• The ordered logit model:

• Having a negative XB here means that increases in X make the 

cumulative p smaller, i.e., a positive substantive relationship

• NOTE:  This would have looked the same had we done regular 

dichotomous DV logit by predicted P(Y=0) versus P(Y=1), instead 

of P(Y=1) versus P(Y=0), with τ=0
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• In terms of odds:

• Taking logs of both sides gives the log-cumulative odds as:

• So ordered logit is linear in the cumulative logits, or “log-

cumulative odds” that Y is in category m or lower

• Increases in X lead the cumulative logit to decrease by B amount, 

which means that the odds are smaller that the case is in lower 

categories as X gets larger (if B is positive, that is)
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• We can derive probabilities of being in each category

                                        which is the same as the cumulative P(Y<=1)

or the cumulative probability of P(Y<=2) minus the cumulative P(Y<=1)

which is 1 minus the cumulative probability of P(Y<=2) 
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Example of Ordered Logit

• So cumulative logit for category 1:  .72-.42*groups

• Cumulative logit for category 2:  2.77-.42*groups

• Predicted Probability for category 1:  exp(.72-.42*groups)/(1+exp(.72-.42*groups))

• Predicted Probability for category 2:  

     exp(2.77-.42*groups)/(1+ exp(2.77-.42*groups)) - exp(.72-.42*groups)/(1+exp(.72-.42*groups)

• Predicted Probability for category 3:  1- exp(2.77-.42*groups)/(1+ exp(2.77-.42*groups))
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• Odds Interpretation:

• As groups increase by one unit, the cumulative odds of being in category m or below 

versus being above category m changes by a factor of exp(-β).

• Here it is exp(-.42)=.66

• So cumulative odds of being at or below category 1 versus above for a groups=4 

person compared to a groups=3 person is .39/.58=.67

• Cumulative odds of being at or below category 2 or below versus above for a 

groups=4 person compared to a groups=3 person is 3/4.56=.66 

• Alternative (and easier) interpretation is to express in terms of the greater odds of 

being above category m versus in a category at or smaller than category m as exp(β), or 

1.52 in this case

• This is what is given by “listcoef” in STATA, along with other standardized effects
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The Parallel Regression Assumption
• Important assumption of Ordered Logit or Probit:  There is only one β for 

each X – that is, the lines are parallel for the cumulative Ps for all categories.  

This means that the effect of X on getting into category 1 is the threshold for 

category 1 – XB (or the change in the cumulative log-odds for category 1), the 

effect of getting into category 2 is the threshold for category 2-XB (or the 

change in the cumulative log-odds for category 2), etc., and the β are the 

same for all of these calculations.  It is not the case that in predicting 

P(Y=2) that you use a different value of β than you use to predict P(Y=3), 

P(Y=1), etc. 

• So changing from groups =3 to groups=4 leads to 

– A factor change in the cumulative odds of being at/below versus being above category 1 of  

.66, or .39/.58 (or a 1.52 factor change in the odds of being greater than category 1 versus 

at or below: 2.57/1.70=1.51) 

– A factor change in the cumulative odds of being at/below versus being above category 2 of 

.66, or 3.00/4.56 (or a 1.52 factor change in the odds of being greater than category 2 

versus at or below .33/.22=1.5)

• The change in cumulative odds at or below versus above is a constant .66 NO 

MATTER WHICH CATEGORY YOU ARE TALKING ABOUT

PS2030 Political Research and Analysis, Spring 2025 26



• Could imagine a situation, though, where cumulative P (or odds) of 

being at or below category 1, e.g., would be affected by X to one 

degree, and the cumulative P of being at or below category 2, e.g., 

would be affected by X to a different degree

• Could run a bunch of different bivariate logits based on the different 

cumulative P values, and compare the coefficients for X to see if they 

are (nearly) identical

• “Brant” Test available in Stata: brant,detail

• If significant, proportional regression assumption is violated, and you 

need to move to alternatives (multinomial logit, “partial proportional 

odds”, or others) which we won’t have time for this semester!
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