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Plan for Session

• Extension of bivariate regression to include additional explanatory 

variables

• Estimation of partial slope coefficients

• Hypothesis testing in multiple regression

• Assessing the relative importance of explanatory variables

• Testing alternative models

• Regression diagnostics
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Why Multiple Regression?

• Essential for Causal Analysis

– We need to control for third, fourth, etc. variables so that we get the “true” 

(unbiased) effect of the primary independent variable of interest on the 

dependent variable

– Is X truly related to Y or is the relationship “spurious”?

– Is a treatment or a policy intervention truly responsible for some outcome, 

or is it because the people or places or units exposed to the treatment or 

intervention already differed on some important variable that produced the 

outcome (i.e., the selection problem in non-experimental research)

– In non-experimental research, we cannot be sure without controlling for as 

many other variables as we plausibly can (and even then, we cannot be 

100% sure because of unmeasured variables that may be relevant!)
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• With multiple regression, we obtain a better understanding of *all* 

(or at least more of) the factors that explain the dependent variable

– No relationship in social or policy sciences is monocausal, so multivariate 

explanations are more likely to be correct, i.e., predict the DV better 

– Introducing additional variables may help clarify which ones are the most 

important predictors of Y

– Introducing additional variables may help clarify the conditions under which 

each one has strongest effects on Y

• So: multiple regression is more likely to satisfy regression 

assumptions, reduce *specification error*, increase R-squared, and 

produce *unbiased* (or less biased) estimates of the effects of each 

independent X variable on Y
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Multiple Regression Analysis

• We introduce X2 (X3,X4…) into the process to see 

whether X1 is truly related to Y, once X2 is controlled, 

and to see whether X1 and X2, taken together, provide a 

better explanation of Y than either by itself

    

    X1         X2

      β1  β2

      Y   ε

PS2030 Political Research and Analysis, Week 3



Estimation of Multiple Regression Coefficients

• Logic:  Take out the part of X1 that is related to X2, and 

take out the part of Y that is related to X2, and then 

regress what is left from X1 on what is left from Y!

• This is then the effect of X1 on Y with no influence of 

X2 on the process at all, or, “controlling for X2,” or, 

“holding X2 constant”

• These effects are called “partial slopes”
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• Partial slope for X1, controlling for X2:

• Then regress vi on ui:

• The regression estimate is the partial, or multivariate, slope of X1 on Y, controlling 

for X2. We’ve regressed the residuals of Y from an X2 equation against the residuals 

of X1 from an X2 equation

• Same procedure to find the multivariate slope for the effect of X2 
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Computational Formula

• Bivariate Slope:

• Multivariate Slopes:

• What is the difference?  Multivariate slope subtracts out the joint correlation 

of X1 and Y with X2!!  That is what it means to “control” for X2 (or to control 

for X1 in the equation for β2)!

• If all variables are positively related with each other, the multivariate slope will 

be smaller than the bivariate slope
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Example
• South Africa Civic Education Data 

   St.Dev.  Correlation Matrix

Political Knowledge 1.94  1.00

Civic Education Workshops 1.18  .216 1.00

Education  1.37  .562 .122 1.00

• Bivariate slope for Civic Education on Knowledge:  

• Bivariate slope for Education on Knowledge:

• Multivariate slopes:

• Why the differences?  The bivariate slopes overestimated the unique effects of each 

variable, misattributing the joint correlated effect of X1 and X2 on Y to the separate 

variables.  This was especially the case with the effect of civic education.
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R-Squared in Multiple Regression

• “Explained” or Regression Sum of Squares, divided by Total Sum of Squares, or 

      1 Minus (Error Sum of Squares divided by Total Sum of Squares)

• It is not the case that R2 (multivariate) = (ryx1)
2+ (ryx2)

2 as in the bivariate case.    

Why not?  Some of the individual correlations with Y are “joint sums of squares” 

due to the interrelationship between X1 and X2, so they would be “double-counted” 

by simply adding the bivariate correlation coefficients together! 

• But:

• This implies that we cannot partition the variance of Y to X1 and X2 only; there will 

always be “joint correlated effects” so long as X1 and X2 are related

• It is the case, though, that multiple R, squared = multivariate R-squared 
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Adjusted R-squared

• Since OLS maximizes R2 by construction, it is always possible to improve (or at 

least not decrease) R2 by adding new variables, whether or not they are relevant.  

If you add enough variables, you will always get some improvement in R2

• Logically, if you have 2 cases, any one variable will perfectly predict the outcome 

for those 2 cases; if you have 3 cases, any two variables will perfectly predict; 4 

cases, 3 variables will perfectly predict, etc.

• We can adjust R2 to take into account the number of independent variables, 

relative to the number of cases.   Adjusted R-squared, or “R-bar-squared” is:

• where k is the number of independent variables, and N is the number of cases

• You can see that in small samples, as k increases, the adjustment could be 

substantial

• R-bar squared can decrease when adding new variables, and it can also be <0 
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Example
• South Africa Data

   St.Dev.  Correlation Matrix

Political Knowledge 1.94  1.00

Civic Education  1.18  .216 1.00

Education  1.37  .562 .122 1.00

• R-squared (multivariate):

• Adjusted R-squared:

• Not much difference in this example.  Why? The adjustment factor is small because of only 2 

independent variables and the large number of cases.  This of course will not always be the case!
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The Relative “Importance” of Variables
• How do we assess which variables are most “important” in explaining or 

accounting for the dependent variable?

• In general,  it is difficult to compare the regression coefficients of variables that are 

measured on different scales.  How does the coefficient for civic education 

exposure of .25 – meaning that each workshop an individual attends is associated 

with a .25 change in “correct” political knowledge – compare to the coefficient for 

education of .77 – meaning that each year of education is associated with a .77 

change in “correct” political knowledge?  Which is the “more important” effect?

• This can be even more difficult in other cases: how can we compare the effect of, 

say, one dollar of GDP on a country’s Freedom House score to one additional 

NGO or one additional average group membership to one additional point in a 

Gini coefficient?  One scale of the IV is in dollars, the other is in groups, the other 

in the Gini scale based on income concentration.  How can they be compared? 

• One way is just to accept the scale difference and interpret the unstandardized βs 

that you obtain; that is, do what we did in the bivariate case for each variable 

separately and come to a conclusion about which variable has the biggest 

theoretical impact.  We can call this the “theoretical importance” of a variable

•  
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• Another way to compare variables is to standardize them all to have a mean of zero 

and a standard deviation of 1, (i.e. “z-scores”), and then run a regression of 

Standardized Y (z-score Y) against the Standardized X (z-score X) variables.  The 

resultant regression coefficients are called Standardized Beta coefficents.

• They can be obtained, as above, by manually re-expressing all variables to be in z-

scores and then running a regression; or, equivalently, through the formula:

• Interpretation:  “As the standard deviation of X changes by 1 unit, the standard 

deviation of Y changes by Beta units”.  

• Since all variables are on the same scale, the Beta coefficients can be compared:  

ones with higher Betas are “more important” than those with lower Betas

• Our example:

• So a standard deviation change in education brings about a .54 standard deviation 

change in knowledge, while a standard deviation change in civic education brings 

about only a .15 standard deviation change in knowledge.  Education has a stronger 

effect in standardized terms than civic education; it is more “important” in this sense
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Comments on Beta

• In a bivariate model, Beta=r 

• One argument against the use of Betas in general is that, because they conflate the 

“true” effect along with the sample standard deviation in the independent variable, 

they are not useful for explaining Y. This debate has not been resolved in the 

literature.  We need a way to compare relative importance of variables, and Beta is an 

intuitively appealing measure that makes use of standardized scales for all variables

• But wherever you come down on this argument, it is important not to use Beta for 

comparing effect sizes for the same variable across samples; in that case you 

absolutely won’t know whether the difference reflects a difference in the “true” 

effect or differences in the variances of the explanatory variables in those samples.

• So compare Betas within samples and compare Unstandardized β across samples to 

see where effects are strongest

• Betas with dummy variables (0,1) are not meaningful.  Use what is called the “effect 

coefficient” or “Y-standardized” coefficient instead:  β/S.D.(Y) and say that moving 

from 0 to 1 on the variable changes the SD of Y by a certain amount
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• Betas provide what can be called “dispersion importance”; the extent to 

which standardized changes in X are associated with strong or weak 

standardized changes in Y. Beta thus gives you something akin to an “R-

squared or explained variance” importance for each variable

• In fact, you can imagine adding each variable to an equation that has all other 

explanatory variables already included and noting how much R-squared 

changes by adding the variable in question. This “increment to R-squared 

by adding X at the last step” is what portion of R-squared we can attribute 

uniquely to X.  Beta-squared is (nearly) identical to this value:

• Rule of Thumb:  This value should be at least .01 (corresponding to a Beta 

of at least .1) for X1 to have “substantive importance” in explaining Y

• See Gross (2015) for more on substantive versus statistical significance
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Hypothesis Testing in Multiple Regression

• Individual Coefficients:  T-test

where

– Same procedures as in bivariate case, but the estimated standard error of the 
slope is adjusted to take into account the degree of correlation between X1 and 
X2.  As that correlation increases, the standard error associated with the 
estimated slope coefficient gets bigger (i.e., more uncertainty).  When the 
correlation is extremely high, we have multicollinearity and the standard 
errors explode or, when r=1, become impossible to calculate.  This is logical!!  

– Otherwise, the same factors that decrease standard errors are in play for the 
multivariate as bivariate case: greater explanatory power of the model, larger N, 
and larger variance in X
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• The formula for standard errors of the partial slopes can be generalized to the k 

independent variable case as:

• where the last term in the denominator is the R-squared of the given variable in 

an equation where it is regressed against all other independent variables

• So smaller standard errors 

– when model explanatory power is high

– when variance in X is high

– when the joint correlation between a variable and all the other IVs is smaller

– when the number of cases is higher

– when the number of IVs, relative to the number of cases, is smaller 

     (this follows the logic of “adjusted R-squared”) 
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Example

• Civic Education on Knowledge

– Bivariate slope= .355

– Multivariate slope, adding education:  .245

• Standard errors:

– Bivariate: 

– Multivariate

– Why the difference?  We obtain a smaller multivariate standard error because of:

• greater explanatory power of the multivariate model (i.e. lower RMSE)

• low intercorrelation between education and civic education exposure (r=.122)

– In other instances, standard errors will be larger in the multivariate case, esp. if 

intercorrelation between IVs is higher
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i
)2

N - k -1

S( X
i
- X )2(1- r

x
1
x

2

2 )
=

RMSE

S( X
i
- X )2(1- r

x
1
x

2

2 )
=

1.58

1303.36 *(.985)
=

1.58

35.83
= .044

  

ŝ
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Hypothesis Testing, Continued:  The F Test

• Do all of the explanatory variables, taken together, account for a significant 

amount of variance in Y?  Or, can we reject the hypothesis that the slopes of all 

variables are equal to 0 in the population

– H0: β1= β2 = βj =0

– H0: R
2 =0

– Specify alternative hypothesis and alpha level

– Calculate test statistic F and make a decision
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• F is the ratio of two variances, the regression variance and the error 

variance.  Under the null, F=1, so you are testing how much larger 

than 1 is the ratio in your case, and whether that difference from 1 

is large enough to rule out sampling error as having been 

responsible (at a particular alpha level or level of significance)

• Our example:

So

• Critical value of F for those df is 3.00.  So we reject H0

• Important: F can be significant even if all T-tests are 

insignificant (due to possible multicollinearity). Need to 

examine all significance tests as you interpret the models
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The F* test and Model Building
• Logic of F can be extended to testing the significance of sets of 

independent variables. Do the variables, taken together, explain a 

significant amount of variation in Y, once all other variables are taken 

into account?  This is useful information for several reasons:

– There may be high intercorrelations between the variables, so that individual       

t-tests are insignificant but there is a lot of explained variance from the variables 

taken jointly

– You can use the results of these tests to cast light on the importance of groups of 

variables from different theories in accounting for some outcome 

– You can use the results of these tests to inform how you build and report the 

different models from your analysis

• Think about this test as comparing the explanatory power of two 

models:

– Full Model:  One that has all variables included

– Reduced Model:  One that has all variables except for a given set of variables 

included
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• Does the full model explain a significantly greater sum of squares in the 

dependent variable than the reduced model?  (Equivalently, does the full 

model reduce the error sum of squares compared to the reduced model?) 

Taken together, does the set of IVs lead to a significant marginal 

improvement in R-squared?
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• You could say that F* is a test of the significance of the increment to R-squared 

that a set of independent variable would contribute at the last step of model 

building, i.e., after all other variables are included

• This increment is based on what is called the “Extra Sums of Squares” for the 

set of IVs, i.e., the reduction in error sums of squares that occurs after the set of 

IVs are included

• The Reduced model can have any number of variables deleted from the Full 

model that you desire.  You can test the effects of variables 1,2, and 3 by 

comparing a Full model that includes variables 1,2,3,4,5, and 6, with a Reduced 

model that includes variables 4,5 and 6 only.

• This is a useful way to test sets of variables that belong to different theories

• You can accomplish this in STATA by estimating a full model and then entering

       test var1 var2 var3   

     which returns the results of the F* test for the set of variables (var1, var2, var3)

• In R, you estimate the full and reduced model and then run an Analysis of 

Variance to compare the Fs from the two models:

      anova(name_reduced_model, name_full_model)
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• Example:  Which set of factors are better at explaining political knowledge -- social 

background characteristics (resources), or motivational factors?

Full Model: Age, education, church attendance, interest, media exposure, efficacy 

(R2=.43)

Reduced Model (1):  Interest, media exposure, efficacy only (R2=.29)

Reduced Model (2):  Age, education, church attendance only (R2=.32)

Increment to R-squared attributable to Social Background Factors:        .14

Increment to R-squared attributable to Motivational Factors:                 .11

Total R-squared                                                                                      .43

So both sets of IVs are “important”, taken together
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• Notes on F and F*

– F*≠F since F* tests a subset of variables while F tests them all

– F≠t2 in multiple regression as it does in bivariate regression, but the F* test 

for a single variable does equal t2 for that variable

– We can partition the total Explained or Regression Sum of Squares in a 

model as:

    Extra SS(X1)+Extra SS (X2) + Joint SS(X1,X2)+Extra SS(Xj)….

– You can see that F* for each variable tests the significance of its respective 

Extra SS

– With Multicollinearity, all or nearly all of the Explained SS is joint SS – 

there is no unique Extra SS for the individual variables.  That is why the F 

(or F*) test can be significant while the individual t-tests are not.  In fact 

this is one of main diagnostic tests for the presence of multicollinearity in 

the model

– When you misspecify a model by excluding, for example, X2, OLS takes all 

of the joint SS and assigns it to X1.  This is why you get misleading (biased 

and inconsistent) estimates of its causal effect.  The Joint SS does not 

belong to either X1 or X2 uniquely
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• Notes on Model Comparisons

– Models are “better” than other models if:

• They include relevant variables that other models omitted

• Adjusted R-squared improves (by at least .01) but not simply because 

of including theoretically meaningless variables

• The model makes sense theoretically. You must report and explain 

anomalous findings!!! 

• Do not let the statistical software program find your model for you!!!

– You can compare the explanatory power of different sets of 

variables from different theories, show the increment to R-squared 

of those variables at the last step, show the F* tests, and make 

assessments of the relative “importance” of the variables based on 

the totality of the evidence
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Regression Diagnostics and Residual Analysis
• Assessment of the results of OLS models also depends on how well we can 

justify the OLS assumptions.  Some of this is based on theory (in particular, 

specifying the appropriate model), but we can use the empirical results to 

shed some light on some of the assumptions, in particular those concerning 

the error term or residuals ε

• Although we do not observe ε, we do observe the OLS residuals “e”, and we 

can use the sample errors to shed some light on what is likely to be the case 

for the population ε

• We can see, for example, whether the errors look to be:

– Heteroskedastic

– Autocorrelated

– Non-normally distributed

• We can also use the OLS residuals to see whether there are significant 

“outliers” that are distorting the analysis or observations that are exerting 

undue “leverage” on the results

• Finally, we can use the residuals to shed some light on functional form issues
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The Basic Plot:  Residuals With Predicted Y or With X
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Any pattern here aside from rectangular, even distribution 
indicates a possible problem.

Here:  heteroskedasticity possible, and possible outlier
With time-series data, plot resids against time to see 
autocorrelation possibility



Normality of Errors
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Outliers and Leverage

• In the “countries data set, we run a 

scatterplot of life expectancy against 

per cent urban.  Nice relationship but 

one point looks “out of whack”

• After regression, we generate the 

“rvfplot” against urban.  Then we can 

see that the one case has a huge 

negative residual.  This is an “outlier”. 

What country is it?

• Bhutan:  Urbanization 95%, Life 

Expectancy 49, some 29 years lower 

than expected based on urbanization

• Should we drop it from the analysis?  

Is it theoretically so distinctive that it 

should not be governed by the same 

processes as all the other countries?
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• Leverage:  How much would the estimates change if the ith observation were 

eliminated from analysis?  If a lot, the case has “leverage” and we might consider 

dropping it – but at least understand what it is doing to the estimates.

• Cases can have lots of leverage even if they have small residuals.  For example, a 

case that is very far from the mean of X (or the probability mass of X) has the 

potential to change the OLS line by a lot, and there may or may not be a large 

residuals associated with that case.

• Stata statistics associated with leverage and residuals:

– DFBETA:  the distance the regression coefficient would shift when the ith 

observation is included or excluded, measured in estimated standard errors of 

the slope.  If greater in absolute value than 2/√N, then look into it further

– DFITS:  a scaled difference between predicted values for that case when it is 

included and when it is excluded from the regression.  Will be high when 

either the residual is very high or when leverage is very high.  Suggested cut-

point for concern:  absolute value greater than 2/√kN
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