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Plan for Sessions

• Assumptions of OLS regression: what they are, why they are 

needed, what they provide for us

• Hypothesis testing in bivariate regression models

– Is the slope “statistically significant”?

– Does the equation as a whole explain a “significant” 

amount of variation in Y?

• Confidence intervals for regression coefficients
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2. The Assumptions of OLS Regression

• We want to use the estimates from the SRF to make inferences about 

the PRF

• But we can only “trust” the estimates produced by OLS when certain 

assumptions about the population and the PRF are true

• OLS is one of many possible “estimators” that could be used to 

arrive at “estimates” of population parameters.  Previous slides 

showed that it is based on intuitive logic and that the OLS regression 

line has many desirable properties.  But it will give us inaccurate 

information about the PRF unless certain assumptions hold.

• What do we mean by “inaccurate information”?

• How do we know if the assumptions hold, given that population 

distributions, relationships, and parameters governing the 

relationships are almost always unknown? 

• What should we do about it if the assumptions don’t hold?
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• The goal of providing “accurate information” about the PRF can be 

recast in terms of what we want to see from the sampling 
distribution of SRF estimates that is produced by a given estimator

• The sampling distribution of slopes is what would result if we were to 
sample the population an infinite number of times, calculate the slope 
using a given estimator, and plot the distribution of the sample slopes

• We use this sampling distribution to make inferences about the 
population slope from the slope that we observe in our single sample

• We can say that the assumptions of OLS need to be satisfied in 
order to ensure that the sampling distribution of slopes that is 
produced by the OLS procedure can be used to make accurate 
inferences from our single sample to the population parameters 
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Example of a simulated OLS “empirical” sampling distribution:

N=50, β0=.5 β1=.2, σ=.5, number of samples=100
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Desirable Properties of Estimators:  Unbiasedness

• We want the sampling distribution 

of an estimator to be centered 

around the true population 

parameter

• E (   )=β

• That is, on average we want the 

value of the slope we estimate with 

our sample data to be the true 

population value; we neither 

underestimate nor overestimate the 

population value using the given 

estimator.

• OLS (and many other estimators in 

regression) will be biased under 

some conditions!

̂
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Desirable Properties of Estimators:  Efficiency
• Estimators produce sampling distributions 

with different variances – some produce 

estimates that are very similar from sample to 

sample, and others produce estimates that 

vary widely (given fixed population 

characteristics)

• Other things being equal, estimators with 

smaller variances are preferred, since we will 

have more confidence that our single sample 

estimate will be as close as possible to the 

value of the true population parameter 

(assuming the estimator is unbiased)

• This will mean the we can conduct statistical 

tests of the significance of regression 

coefficients accurately, and with the best 

chance of rejecting the null hypothesis of no 

effect of X on Y, given a true relationship in 

the population (i.e., “standard errors” will be 

accurate and as small as possible)
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Desirable Properties of Estimators:  Consistency

• Some estimators have desirable 

properties only in large samples, or 

asymptotically as N→∞

• Estimators are “consistent” if, as N 

gets larger and larger, the estimates 

they produce converge on the true 

population parameter

• Some estimators are biased in small 

samples but the bias disappears as 

N→∞

So the ideal regression estimator would produce a sampling distribution that is 
centered around the true population slope, would have minimum variance, and 
would converge on the true population slope as sample size increases.  If the 
following assumptions about the population model hold, OLS (assuringly) has 
these qualities!!  If they do not hold, we need to take corrective action – change 
our model or change our estimator (or both!!)
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Assumption 1:  No Specification Error

• This says that the bivariate model you have specified between X 

and Y is actually the “true” model in the population.  If not, then 

estimating the effect of X on Y in our sample will possibly not 

yield correct estimates of true β, and will not yield correct 

estimates of the sample-to-sample variance in β, thus preventing 

accurate testing of statistical significance.  This is the most 

important assumption of all!!!!  

• This assumption is violated whenever:

– You have omitted relevant explanatory variables

– You have included irrelevant variables

– The relationship between X and Y is not linear, or not additive (in 

multiple regression with several X)

– There is reciprocal causality between X and Y
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• Let’s say the true population model is:

• But you assume that the true model is:

• That means that 

the error term in your assumed model is composed of the “true” error term plus the 

excluded variable.  This is specification error!

• Consequences for OLS estimates of “β1”:

– If X2 is unrelated to X1, OLS b (which is actually an estimate of β’1) will be 

consistent but inefficient: since ε’ is too big, the estimated variance in b will be 

too big as well (and R-squared will be smaller than it should be).  So harder to 

achieve statistical significance.

– If X2 is related to X1, OLS b will be biased (and inconsistent) as well.  The error 

term ε’ will be related to X1, and some of the true effect of X2 on Y will be 

improperly attributed to X1.  Huge problem!  (OLS is greedy and maximizes 

explained sums of squares, even if some actually belong to the error SS)

– The technical violation of OLS assumptions is that E(X ε)≠0 (see 

assumption 4b below). Since OLS by construction produces a line where X and 

ε are unrelated, it is a biased and inconsistent estimator whenever X and ε truly 

are related in the population. This is one form of “endogeneity” in the model

0 1 1 2 2i i i iY X X   = + + +
' ' ' '

0 1 1i i iY X  = + +
' '

2 2i i iX  = +
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• Other kinds of misspecification

– Including irrelevant variables in your assumed population model

• Since they are not relevant for explaining Y, OLS estimates of the effects 

of the other relevant variables that are included will be consistent

• They will show up as statistically insignificant (in the long run, at least), so 

generally have minimal consequences.  However, in small samples there 

could be some relationship between the “irrelevant” variable, Y and the 

relevant X variables that will lead to biased estimates.  (As N increases, the 

“true irrelevancy” of the variable will be revealed).

• But:  it will add another variable to the set of k independent variables, and 

k figures in the calculation of “adjusted R-squared” and some other 

statistics relevant to multiple regression that we will discuss next time.  

Again, in small samples especially this could cause some problems for your 

analysis, but generally we don’t worry as much about this as omitting 

relevant variables or other kinds of misspecification
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– Functional form is not linear in the population.  Examples:

Quadratic 
“U-curve”

Quadratic 
“Inverted 
U-curve”

“Logarithmic”

“polynomial” 
or “cubic”

Estimating the simple linear regression model 
yields bias.  But all of these specifications can 
be turned into a form that is amenable to OLS 
linear regression estimation (“linear in the 
parameters”.  Either add squared, cube terms 
to the model or transform the variables.  
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– Reciprocal Causality as Specification Error

– If true population is a system that looks like this:

 ε1  ε2

 X  Y

then you cannot estimate β1 or β2 using OLS.  Why not?

You can see, e.g., that ε2, the error term in Y, is related to X, as 

ε2 effects Y which then effects X.  So E(Xε)≠0 again!

– Using OLS will again attribute some of the effect of Y on X 

(β2) as being included in the X on Y effect (β1).  Bias and 

Inconsistency!!

– This is another kind of “endogeneity” in the X—Y 

relationship  

1

2
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• Assumption 2:  No Measurement Error in X or Y

– Different consequences for OLS if Y or X contains random error

– In Y:

– so OLS overestimates error variance, lower R-squared and larger standard errors!

– In X:

– So OLS overestimates error variance *and* E(Xε)≠0 again (since v and x* are 

related).  So OLS produces biased, inconsistent and inefficient estimates!!!

0 1

*

*
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*
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• Assumption 3a:  There is some variance in X in the 

population.  This is an “obvious” assumption – if X is fixed at 

one value, then there are no “changes in X” with which to 

explain “changes in Y”.  The OLS procedure breaks down (as the 

variance in X is in the denominator)

• Assumption 3b:  There is no perfect correlation between the 

Xs in a multiple regression population model.  This would result 

in perfect multicollinearity between explanatory variables.  Intuitively, 

we could not be able to distinguish the effect of X1 from the 

effect of X2 using OLS (or any other estimator).  As we will see in 

the multiple regression section, estimation is mathematically 

impossible in the extreme case.  As the correlation approaches 1, 

results become highly unstable.
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• Assumption 4a:  The expected value of ε is 0, or E(εi)=0

• Assumption 4b:  The expected covariance of X and ε is 0, or E(Xiεi)=0

These assumptions summarize the specification error assumption we covered in 

1, so there is not much new here aside from the more technical language.

• Since εi is all of the omitted variables influencing Y as well as random 

measurement error, we assume that their average value is neither positive 

(pushing the conditional mean of Y upward) nor negative (pushing the mean 

of Y downward)

• Violating this assumption (4a) leads to bias in the estimation of the intercept 

(though this is usually not crucial to political science inquiry)

• We also assume (4b) that X is independent of the error term (i.e., no 

endogeneity) for the reasons stated above. Violated when:
– The population model contains relevant variables that are related to X which have been 

omitted

– There is random measurement error in X 

– There is reciprocal causality between X and Y

Assumptions about the Population Model’s Error Term (ε)
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Assumptions about the Population Model’s Error Term (ε)

• Assumption 4c: Homoskedasticity, or equal error variance at all levels of X
 

E(σi
2)=σ2 for all Xi

• Can arise because theoretical relationship is heteroskedastic, from omitted 
variables, clustering in data, and other reasons

• Consequences for OLS: unbiased but inefficient – we can use other estimators 
that produce less variance in the sampling distribution.  Weighted Least Squares 
(WLS), or, at minimum, OLS with “robust” standard errors

Y Y

v
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• Assumption 4d:  No Autocorrelation, or E(εiεj=0) for all i and j

• Residuals for one case should be unrelated to residual for all other cases.  OLS 

treats all cases equally and wouldn’t be able to recognize a situation where the 

errors are related – it would minimize the sum of squared residuals even though it 

shouldn’t!  This problem occurs most often in time-series data.

• Causes:  Shocks that persist, omitted relatively stable independent variables

• OLS fits the best line it can, doesn’t recognize that Y is where it is at a given point because of past values 

of the residual.  Consequences:  Inefficiency and possible bias!  Corrections are available (“Generalized 

Least Squares” or robust standard errors for time-series situations)

Assumptions about the Population Model’s Error Term (ε)

X

β β
OLS b
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• Assumption 4e  Residuals are normally distributed, i.e., εi~N

• Above assumptions 1-4d are all that are needed to estimate the population 

parameters without bias and with minimal variance in the sampling distribution.  

We can say, following the famous Gauss-Markov Theorem, that the OLS 

estimator is BLUE – the “best linear unbiased” estimator of the population 

parameters (“best” meaning “minimum variance” here).

• But we still cannot conduct statistical tests because we do not know the exact 

shape of the sampling distribution, so we cannot rely on statistical theory to tell 

us, e.g., how far away from a hypothesized population value our sample value is 

likely to be.

• If we are willing to make the further assumption that the residuals in the 

population are distributed normally, then this problem can be solved

• If εi~N, then β~N, i.e., the sampling distribution of the slopes will be distributed 

normally

– If εi~N, then Y is distributed normally

– β (and b) is a linear combination of Y, specifically 

– Any coefficient that is a linear combination of a normal random variable is itself a normal 

random variable

2

( )

( )
i

X X
b Y

X X

 −
=
 −
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The Population Regression Function (PRF) 
with the assumption of normal residuals

X

Y
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Normality (continued)

• Is the assumption reasonable?

– Yes, if we assume that the residuals are made up of all of the omitted 

variables in the population model.  The Central Limit Theorem (CLT) says 

that the sum of a large number of independent random variables tends to a 

normal distribution as the number of variables increases.  

– In small samples, the normality assumption is more important than in large 

samples.  As sample size increases, deviations from normality can be 

“tolerated” more and OLS will still produce desirable estimates (as the 

sampling distribution from even abnormally distributed residuals will be 

unbiased, efficient, and approximately normal (provided the other 

assumptions hold).

• So, we summarize the error term assumptions as:

• Or, the residuals are normally distributed with a mean of 0, and a variance σ2 

that is constant for all Xi.  We can also say that the residuals are “independent 

and identically distributed”, and this subsumes the “no-autocorrelation” idea as 

well
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Sampling Distribution of β Under OLS Assumptions

• If all OLS assumptions hold, then it can be shown that

• or, the sampling distribution of መ𝛽 will be:

–  normal

– centered around the true population parameter β

– with a standard deviation (“standard error”) of   

– the numerator is the population error standard deviation (RMSE), the 

denominator is the square root of the sums of squares in X

– this puts us in the position to conduct statistical tests of significance

2

2 2
,  or 

( ) ( )i i
X X X X



 
 =

 −  −
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• Sampling Distribution of β

• OLS is “BLUE”:

– Unbiased, as E( መ𝛽)=β

– Efficient, with minimum variance 

among class of linear unbiased 

estimators (i.e., smallest possible 

standard deviation or “standard 

error”); 

AND 

– the sampling distribution from   

OLS is normal

𝛽
2( )iX X



 − 2( )iX X



 −

34.0 % 34.0 %
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3. Hypothesis Testing in Regression Analyses

• As with all statistical analyses, once we have established the nature of 
the regression relationship between X and Y in our sample, we need 
to see whether we can reject the idea that there is truly no 
relationship between X and Y in the overall population.  In other 
words, we need to conduct statistical inferences from our sample to the 
population

• The tool for this in regression is the sampling distribution of the slope, 
shown on the previous slide

• We assume a “null hypothesis”, where the true population value of 
the slope is 0, and we determine how many standard deviations or 

standard errors away from 0 is our sample value b or መ𝛽.  If it is 
sufficiently unlikely to have obtained our sample value from a 
population where the value of β were 0, we reject the null hypothesis 
(with some probability α of being wrong).  We then say that there is 
a “statistically significant slope coefficient” or “statistically significant 
bivariate relationship” between X and Y 
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Steps in Hypothesis Testing

• Specify the null and alternative (or research) hypotheses

– H0: β1= 0

– Hr: β1 ≠ 0  (“two-tailed”), or β1 > 0  (“one-tailed”) 

• Specify the alpha, or significance level

– α = .05  (the .05 significance level).  This means that we will 
reject the null if the chances of observing, through random 
sampling, a value of the slope as large as we observed in our 
sample if the null hypothesis were true is less then .05, or 5%.

• Construct a test statistic and make a decision

– In this case, we have a sampling distribution that is normal, so 
we can calculate how many standard errors away from 0 our 
sample value is.  This would be a z-score, calculated as

0 01 1

2

( ) ( )
or

( )i

b b
z

X X



 



− −
=

 −

PS2030 Political Research and Analysis, Spring 2025, Week 2



• Slight complication, however, in that we do not observe the population residual 

sum of squares, which is the (squared) numerator in the formula of the standard 

error of the slope.  We need to estimate it from our sample residuals.

• It can be shown that the quantity

is an “unbiased” estimate of the population error variance σ2.  So we can substitute 

that into our calculation of how many “estimated standard errors” our sample slope is 

from the population value specified in the null hypothesis.

• By using the “estimated” value of σ, we need to use “t” as our test statistic, not 

“z”.  “t” is

and it is distributed normally as N gets larger (>100 or so).  It has a different 

distribution depending on the degrees of freedom in the analysis, which is the 

number of cases that are free to vary, given the constraints in the model.  In this case 

we lose 2 df for the error sums of squares since we needed “a” and “b” to calculate it.  

So the t-test for the bivariate regression slope has degrees of freedom equal to N-2.
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• So where is our slope “b” on this 

estimated sampling distribution?  How 

many “t” values away from 0, and what 

were the chances of observing a “t” that 

large if the null hypothesis were true?  If less 

than .05, we reject the null.

• Our week 1 exercise example: b=1.2

• With 8 df, we reject the null at the .05 level 

(two-tailed) if t>2.31 or t<-2.31.  These are 

the critical values for t at that df.

• Our decision:  Reject H0!  The chance of 

observing a b of 1.2 or greater if the null 

hypotheses were true is less than .05. 

(STATA provides the exact probability as 

“p>|t|”; you want a value at or below .05)

𝟎

34.0 % 34.0 %
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Note: In large samples (N>100), the 

critical values for t are ±1.96 for the .05 

significance level (two-tailed), ±1.65 

(one-tailed) 



Notes

• Examine formula for estimated standard error of the slope

• The numerator is the RMSE or the Standard Error of Estimate

• The denominator is the square root of the Sum of Squares in X

• This means that, other things being equal, smaller standard errors 

(and greater chances of rejecting null hypotheses) are the result of:

– Smaller error sums of squares (or larger R-squared from the model)

– More variation in X

– Larger N of cases

• Be careful not to confuse statistical versus substantive significance!

• Pay attention to “low power”:  not large enough N to detect effects 

with sufficient confidence, so there is the risk of not rejecting false 

nulls (“Type 2 error”)

2

2 2

ˆ( )
ˆ2ˆ   =

( ) ( )
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Interval Estimation for β

• We sometimes want to estimate “confidence intervals” around our estimate for β.  

Our best guess of the population parameter β is “b”, our sample estimate.  

• We can construct a 95% confidence interval around “b” according to the 

formula:

      where t.025 is the critical value for t at the .05 significance level for the given

     number of degrees of freedom

• The critical value at the .05 level (95% confidence) will be 1.96 for N>100.  The 

critical value at the .10 level (90% confidence) will be 1.65 for N>100.

• So take your sample estimate and go out 1.96 standard errors on either side to 

construct the 95% confidence interval for the population parameter β.

• If β was not in that interval, it would have been very unlikely (less than 5% of the 

time) to have observed the sample value of “b” that we did observe.  Still, it could 

have happened!  (That is why we only have 95% confidence!).

• Relationship between confidence intervals and hypothesis testing:  If the 

confidence interval overlaps 0, then a t-test will show that you cannot reject 

the null hypothesis

.025
ˆ*b t 
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Testing the Significance of the Entire Equation

• Can also conduct a general test of the overall significance of the equation in terms of 

explaining variation in Y

• In multiple regression, this would test the null hypothesis that all slopes in the 

population associated with all explanatory variables are 0:

   H0: β1= β2 = βj =0

• This is in effect a test of the statistical significance of R-squared; does the equation as 

a whole explain a significant amount of regression sums of squares, or could the R-

squared that we obtained in our model have come about through random sampling 

error?

• The test statistic here is F, and it is calculated as the ratio of Explained to 

Unexplained Variation in Y, or:

• We compare the value of F with the critical value at a given significance level, given 

the df in the numerator and the denominator, and make a decision about H0

2

2

ˆRegression Sums of Squares ( )
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• In Analysis of Variance language, F is the ratio of two “Mean Squares”

• A Mean Square (or a “Variance”) is a Sum of Squares divided by its 

associated degrees of freedom. Here:

• The degrees of freedom associated with the error sums of squares is N-k-1, where k 

is the number of independent variables.  In bivariate regression, this is N-2 as we saw 

(we lose two df in calculating the intercept and the one slope coefficient). 

• The degrees of freedom associated with the regression sums of squares is k.

• The total degrees of freedom in a sample is N-1 (we lose 1 df in calculating the 

sample mean).

• The quantities here correspond exactly to those on the STATA output, where “Mean 

Square Regression”=“Model” and “Mean Square Error”=“Residual”

2
2

2

ˆ( )
ˆMean Square Error ("Residual")=

1

ˆ( )
Mean Square Regression ("Model")=

i i

i
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• It can be shown that

which is equal to σ2 under the null hypothesis that β=0.  

So under the null, we would expect an F of 1, since both the 

numerator and denominator are separate estimates of the same 

quantity (σ2).  

• Can find the critical value for F with df (numerator) and 

df(denominator) and compare the obtained F to this value.  If 

exceeds, reject H0.  If not, do not reject.

• In bivariate case, F=t2 (so always come to same conclusion 

regarding H0)
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• Logic of F:  does the model have a significantly greater amount of regression 

sums of squares, divided by its df, than it does error sums of squares, 

given its df, than we would have expected by chance, or through random 

sampling error?

• Can see the relationship of F to R-squared:

• 𝑅2 =
𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑆
= 1 −

𝐸𝑟𝑟𝑜𝑟 𝑆𝑆

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆

𝐹 =
𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆

𝑘
𝐸𝑟𝑟𝑜𝑟 𝑆𝑆

𝑛−𝑘−1

      then divide numerator and denominator by TSS

𝐹 =
𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆∗𝑘
𝐸𝑟𝑟𝑜𝑟 𝑆𝑆

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆∗(𝑛−𝑘−1)

=
𝑅2

𝑘
1−𝑅2

𝑛−𝑘−1

• So F is in effect a test of significance of 𝑅2!
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𝐹 =

𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆
𝑘

𝐸𝑟𝑟𝑜𝑟 𝑆𝑆
𝑛 − 𝑘 − 1

Standard error of b:
             t

Probability of obtaining 
a “t” of 3.62 or greater 
if the null hypothesis 

were true: 

ො𝜎𝑏
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