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The Aggregate Impact of Explanatory Variables in Logit
and Linear Probability Models*

Charles E. Denk, Department of Sociology, University of Virginia
Steven E. Finkel, Department of Government and Foreign Affairs,
University of Virginia

This paper presents methods for computing aggregate change in probabilities of a binary depen-
dent variable from changes in distributions of independent variables in logit and linear probability
models. We develop a measure for the logit model based on a Taylor series polynomial expansion that
solves the problems inherent in the nonlinearity and nonadditivity of the logit specification. The
method can be used to make out-of-sample predictions based on real or hypothetical changes in one
or more independent variables and may also be used to assess the relative “importance” of different
independent variables by computing the change in dependent probabilities accounted for by each
variable. The measure is in the same spirit as Achen’s (1982) “level importance” measure for linear
models and thus fills an important gap in logit regression analysis. We show, on the basis of simula-
tions and controlled validation in an empirical example, that the aggregate logit impact measure can
produce numerical results that differ substantially from the equivalent measure for linear probability
models. We provide guidance for future research on the detailed application of the logit method and
the criteria for choice of the logit versus the linear aggregate impact measures.

Introduction

Social scientists may have at least two distinct explanatory goals in assess-
ing the effects of a set of independent variables on a dependent variable. One goal
is to explain why some units show higher scores on the dependent variable than
others, that is, to explain variation on the dependent variable among the individ-
ual units that compose the sample or population in question. Another goal is to
assess the independent variables’ effects on the aggregate value of the dependent
variable, that is, to explain why the dependent variable overall is high or low,
based on the distributions of the independent variables among individual units in
the sample. Achen (1982, 68-77) refers to these goals, respectively, as explain-
ing the dependent variable’s “dispersion” and explaining its “level.” For example,
the researcher may wish to know not only which variables explain why some
individuals are politically sophisticated and some are not but also the extent to
which each variable contributes to differences in the overall amount of political
sophistication seen across particular samples.

The analytic distinction between these two goals is plainly evident in the

* Authorship is equal and alphabetical. We thank Thomas M. Guterbock, Steven L. Nock, and
Peter R. Schrott, as well as the editor and several anonymous reviewers, for helpful comments on
earlier versions.
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context of electoral behavior. As Markus (1988, 142) notes, the research goal
may be either “to account for election outcomes or to explain individual vote
decisions. Elections are, of course, aggregations of individual votes. However,
explaining differences in individual votes requires attention to interindividual
differences in relevant causal factors, whereas accounting for variance in election
outcomes depends upon interelection changes in the distribution of those causal
factors.” Following this logic, Markus (1988) argues that although voters’
perceptions of their personal financial situation play some role in explaining
individual votes, the variation in this factor across elections is so small that
it does not account for interelection changes in voting outcomes. Several other
studies also distinguish between accounting for variation in individual votes
and in electoral outcomes (Finkel n.d.; Miller and Shanks 1982; Rosenstone
1983) and conclude that different variables may be important for each level of
explanation.

As yet, however, procedures for “explaining” the aggregate level of a depen-
dent variable exist only for the linear model (Achen 1982; Markus 1988, 144;
Stover 1987), using a logic we shall describe below. Consequently, researchers
are led to employ the linear model because of its statistical convenience, even
where a dichotomous dependent variable implies that the underlying behavioral
assumptions of the linear model are likely to be false. In this paper, we present
procedures for accounting for the aggregate level of a dichotomous dependent
variable using the increasingly popular logistic regression model. We show that
calculating the “level importance” of a variable, in a sense comparable to that
concept for linear models, is possible within the logit context. Further, under
certain conditions the results for logit models may differ substantially from cal-
culations made using the linear probability model and least squares estimation.
Given the statistical and theoretical superiority of the logistic model over the
linear specification in many applications, we believe that the procedures outlined
here offer an improved means for accounting for the level of a categorical depen-
dent variable and for assessing the “level importance” of a set of explanatory
variables.

In the following sections, we review the basic idea of explaining the level
of a dichotomous dependent variable in the context of the linear probability
model and least squares regression. We then present our derivation of a compa-
rable measure for the logit model. We follow this with a brief numerical simula-
tion demonstrating the sensitivity of level importance calculations to several im-
portant aspects of the independent variable’s distribution. We then demonstrate
the use of the logit measure in an analysis of presidential voting in the 1972-76
National Election Studies (NES) panel and compare its results with those ob-
tained from its linear least squares counterpart. We conclude with some practical
advice on using the logit and least squares procedure in empirical analyses in
various contexts.
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Linear Probability Models and Aggregate Change

Probability models describe the distribution of a categorical (typically bi-
nary) outcome variable conditioned on some set of explanatory variables across
individuals. We denote the predicted probabilities for a single outcome at the
individual level as:

P,=Pr[Y,=ylx]

The two principal regression-like contenders are the dummy dependent or linear
regression model:

P, = b'x,. €))
And the log-odds or logit or logistic regression model:!
P i — !
ln(1 — Pi) = b'x,. 2)

In each model P, denotes the probability that a categorical dependent variable, Y,
for individual i, attains a specific value y; X is a vector of explanatory variables;
and b is a vector of effect coefficients. The inner product b’x; denotes, for each
individual, the sum of products of paired regression variables and coefficients,
implicitly including an intercept term.

The impact of a change in a specific x; on P, for an individual i can be
defined for any model via the derivative dP,ldx,, which depends on the model
form.? For the linear model:

dP,/dx; = b; (3)
and for the logit model:
dP,/dx; = b;P(1 — P). “)

Note that the impact of a change in x; for the linear model is a constant,
while for the logit model it is proportional to P(1 — P,), which is the variance of
the individual Y,. This variance is at a maximum when P; = .5, which leads to
the characterization of the logit and similar models as “tipping models,” denoting
the existence of a range of values where the probability is most variable, and
hence explanatory factors have maximum impact. Since the effects of indepen-
dent variables on the probability of a given outcome are often assumed to be

'Later we shall show how the probit model, also popular in this context, may be approached in
the same general way as we present for the logit model.

2The derivative dP/dX may be interpreted as the proportional change or slope AP/AX when AX
is very small. Nonlinear models have varying slopes, estimates of which also vary with the precise
value of AX. Hence, calculus offers the only precise treatment.
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dependent on the value of P,, the logit (or probit) model is a more accurate depic-
tion of the underlying process than the linear specification (Aldrich and Nelson
1984; Hanushek and Jackson 1977).% In voting analyses, the logit specification
better captures the behavior of “swing voters,” that is, those who are approxi-
mately equally likely to vote either way and therefore exhibit more variance in
their choices.

Accounting for the level of a dependent variable in the linear model is a
relatively straightforward exercise that exploits a mathematical identity relating
the means of all variables (Achen 1982, 68-77):

_ 1 n n
P=;ZP,= 2(b0+2bjxu)=b0+zbjij. (5)
J

1
i=1 n,= J

Thus, the aggregate probability of the dependent variable being equal to one is a
function of the intercept term and each independent variable’s mean weighted by
its unstandardized regression coefficient. The contribution of each independent
variable in producing the “level” of the dependent variable observed in the
sample is simply b, X,.

However, the intrinsic meaning of each variable’s contribution, computed in
this way, depends critically on each variable’s scale. For example, if an indepen-
dent variable’s scale range is changed from [0, 10] to [—5, 5], its mean would
change, while the regression coefficient would remain constant. Thus, each in-
dependent variable’s contribution to the dependent variable’s level directly de-
pends on the apparently nonsubstantive decision of scale location. Consequently,
as Achen’s discussion makes clear, any meaningful “level importance” calcula-
tion implicitly invokes some form of cross-sample or hypothetical comparison,
for example: “why this Republican did so much better than others before him” or
“How much difference does [a newspaper’s reporting] bias make (compared to
fair reporting)?” (Achen 1982, 72, emphasis added). Thus, a precise accounting
of level importance involves relating aggregate changes between a specific
sample and an explicit baseline, either observed or hypothetical.*

In the linear model, the levels of the dependent variable in the observed and
baseline distributions (with the baseline denoted P° and ) are related by:

P =P+ 2 b — X)
J

’The linear probability model also violates other OLS assumptions, namely, normality and
equal variability of residuals at all points (homoscedasticity). Weighted least squares may be used to
estimate more efficiently the parameters of the linear probability model, but the model’s specification
of constant effects for explanatory variables remains a fundamental problem.

“In this context, standardizing the independent variables worsens the situation by further ob-
scuring the substantive reference point of the scale.



LOGIT AND LINEAR PROBABILITY MODELS 789

and the deviation of a specific sample from the baseline:
AP = X b(X, — %) = D bAX, 6)
J J
where AX; expresses the (intra}emporal or intertemporal) deviation of x; from the
baseline distribution.

Studies that make use of this logic for both continuous variable and linear
probability models are widespread in electoral and other social science research,
beginning at least with Stokes’s (1966) seminal analysis of the importance of
cross-election changes in the electorate’s partisan attitudes in explaining aggre-
gate shifts in the presidential vote. More recently Smith (1989) uses a model
explaining an individual’s political sophistication to simulate what the level of
the electorate’s overall sophistication would be if education levels were higher
than they are now, or if political interest were at a higher level. In this case, the
baseline comparison is the sample for which he has relevant data to estimate the
initial regression model. Markus (1982) accounts for the “importance” of a set of
independent variables on the level of the presidential vote in 1980 in a slightly
different way. By measuring each variable on a scale such that zero represents
theoretical “neutrality,” Markus can show each independent variable’s effect
on the overall vote compared with a hypothetical “neutral” electorate. For ex-
ample, the public’s low rating of Jimmy Carter’s performance in office had an
overall pro-Republican effect of 6.5 percentage points, compared with an elec-
torate that would have been neutral in their ratings of the incumbent’s job per-
formance (Markus 1982, 559). Finkel (n.d.) uses this same procedure to account
for the impact of change in attitudes on the vote over the course of the 1980
campaign. In a later article, Markus (1988) pools several election data sets and
notes that, given his individual-level model of the vote, “shifting from a distri-
bution of perceived financial well-being such as occurred in 1976 (a relatively
bad year) to a distribution such as that for 1956 (a relatively good one) would
increase the incumbent’s vote share by only 1.3%.” Lewis-Beck (1988, 85-87)
uses these procedures in a cross-national study to estimate the aggregate vote
shifts that would occur in several West European democracies if 20% more of the
electorate (from a 1984 baseline) believed that the future performance of the
government will “worsen” the national economy.

In all of these examples, the relative simplicity of the results is a direct
consequence of the assumption of the linear model that the effects of explanatory
variables are uniform throughout their range at the individual level. Given this
assumption, it is clear from equation (6) that the aggregate impact of each vari-
able depends only on the change in its mean from sample to sample. This as-
sumption, and the resultant ease of the mathematical calculations, undoubtedly
account for the use of the linear model in contexts where the researcher wishes
to discuss level importance. Yet in most of these examples, a nonlinear
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specification such as the logit model would have been considered theoretically
more plausible at the individual level. We now turn to the development of a sim-
ilar aggregate level impact strategy for the logit model.

Aggregate Change under the Logit Specification

Because of the nonlinearity of the logit model, applying the same logic of
aggregating individual changes in equations (5) and (6) fails to produce a result
with the desirable properties of the linear model. For change in the distribution
of any single x:

- 1 1 1 1
AP = ;Z AP, = ;2, (1 F e vmran | 4 e[ D
This equation has two apparent shortcomings. First, computation of the change
in the aggregate probability cannot be obtained directly from changes in the
means of the independent variables (Markus 1988, note 8). This implies that
more information must be employed to weight changes in independent variables.
Second, and more important, in this form the change in the aggregate probability
cannot be decomposed into individual, additive components for each explanatory
variable. This nonadditivity is inherent in nonlinear models.> However, we can
estimate additive components using a standard tool from multivariate calculus:
the Taylor series approximation for the individual change in P,.

In general, the Taylor series can be used to approximate any nonlinear func-
tion as a polynomial based on partial derivatives.® The general Taylor series for-
mula for the approximate change in P, for change in a given x,, which we denote
APk is:

5 Attempts to calculate theoretical effects at the individual level from the logit model suffer from
similar problems. A common tactic is to compute a base probability from the logit model using the
mean of each variable:

1

po= ——
1 + e b%

and then a series of changes in that probability by adding one unit to each variable in succession:

1
AP =

Tl 4 emenyay
Although this “difference model” computes changes in probability that are exact for the given choices
of initial probability and change in each independent variable, they will not add correctly to the
change in probability that occurs when several or all variables are changed simultaneously. Moreover,
since this method is based on hypothetical choices of initial probability and amount of change in the
independent variable, it does not yield an empirical, sample-specific average, as our measure (below)
does.

SAn exposition of the Taylor series can be found in introductory calculus texts such as Saltz
(1977).
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n 1 dPw
i Ak dx

(7]

(Ax,) ®)

where the parenthesized superscript (k) indicates the kth partial derivative. For
example, a first order expansion (m = 1) of the logit model would use the first
derivative for the logit function, defined in equation (4), to produce a linear ap-
proximation of the change in P, at the individual level:
dP,
AP¥ = E‘Ax,.j = bP(1 — P)Ax,. )

i
]

These individual approximations would then be averaged over the sample:
- 1 1
AP = ;2 AP, = b~ ZP,.(I — P)Ax,. (10)

A second-order expansion (m = 2) adds a quadratic term with a second deriva-
tive for greater accuracy in approximating the change in P

1
AP} = bP(1 — P)Ax, + Eb} P(1 = P)(1 — 2P)Ax3, (11)
which would then be averaged to:

. 1

AP* = b|- D>, P(1 — P)Ax,

! ’(n 2 { / ") (12)
1 1
+38 (; E P (1 — P)(1 — 2P)Ax2).
This expansion could in theory contain an infinite number of terms, but two are
adequate for our purposes.” We refer to the quantity in equation (12) as our ag-
gregate logit impact measure. The impact of changes in several variables would
be the sum of the estimated changes for each variable:

AP = 3 APF. (13)

This equation is the logit equivalent of equation (6) for linear models and pro-
vides an accurate decomposition of equation (7) into effects of individual vari-
ables for the logit model.

Equations (9)-(12) express an important point about the nonlinear nature of
the logit and similar models. Since the impact of an independent variable’s
change at the individual level varies, the aggregate or average impact of a shift in
the distribution of that variable under any nonlinear model will depend on more
than the change in its mean. The aggregate impact depends on three separable

"We shall consider the issue of numerical accuracy in a later section of this paper.
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components: (1) the individual-level impact of that variable on the outcome (b, as
interpreted within the given functional form); (2) the distribution of the individ-
ual probabilities (P,) prior to any shift (e.g., large or small concentration of
“swing” voters with P, near .5); and (3) the exact distribution of individual
changes in the explanatory variable (Ax, ). Thus, the aggregate impact of change
in a nonlinear model is specific to the distribution of each independent variable
in the sample in a way that is impossible to capture by the linear model. We
illustrate this point in the following section.

A Numerical Simulation

An extended numerical example will help to illustrate the potential variation
in estimates of our aggregate logit impact measure in specific samples. Assume
that a particular coefficient in the logit model is b, = .5. Then the aggregate logit
impact in equation (12) depends on the distribution of individual probabilities
and the distribution of change in the explanatory variable. In our example, we
shall compare four different distributions for the individual P, and three patterns
of change in the explanatory variable. We use the highly flexible beta distribu-
tional family to generate differently shaped distributions for individual probabil-
ities with the proper zero-one range (Mood, Graybill, and Boes 1974). Our com-
parison choices for the distributions of initial probabilities were:

a. bell-shaped, with mean .5 and standard deviation .2;
b. uniform, with mean .5 and standard deviation .289;
c. U-shaped, with mean .5 and standard deviation .4;
d. skewed, with mean .33 and standard deviation .2.

In a voting context, one might characterize the bell-shaped distribution as rep-
resenting a competitive distribution of voters and the U-shaped distribution as
polarized. Diagrams of these distributions are shown in Figure 1.

We chose three very simple patterns of change in the explanatory variable
(Ax,):

1. all cases increase by exactly one unit;

2. increase proportional to P, averaging one unit;

3. increase largest when P, = .5, declining proportionately with distance
from .5 in either direction and averaging one unit.

Note that all change models are parameterized to produce a mean change of one
unit in the underlying explanatory variable.® For each distribution a—d, we take
the 100 percentile points as simulated observations,’ then impute changes in the
explanatory factor according to each pattern 1-3, and finally compute the

8In the second change model, Ax,j = 2 X P/a, where a is a normalizing factor to force
Ax = 1. In the third model, Ax, = (2 — 4 X |IP, — .5l)/a, again with a normalizing factor.
°This is a deterministic, rather than a Monte Carlo, simulation.
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Figure 1. Hypothetical Beta Distributions Describing Prior Probabilities

a C

= oy
g g
[s3
) P, 1 9 P, 1
> >
g g
% S %
0 P 1 0 P, 1
Table 1. Values of Aggregate Logit Impact Measure under Varying
Hypothetical Conditions
(Logit Coefficient b = 0.5)
Change Model
1) (2 (3)
Uniform Proportional Declining
Initial Distribution Change to P, from P, = .5
(a) bell-shaped (. = .5, 0 = .2) .105 .099 112
(b) uniform (n = .5, 0 = .3) .083 .075 .104
(c) U-shaped (. = .5, 0 = 4) .045 .039 .096
(d) skewed (u = .33,0 = .2) .096 .103 .110

summation in equation (12) for each combination. The results of our compari-
sons appear in Table 1.

We remind the reader that all entries in the last three columns of Table 1 are
estimates of the aggregate change in the outcome probability for an average
change of one unit in the explanatory variable, and that all are premised on the
assumption that the individual-level coefficient from the logit model is the same
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in each case (b, = .5). Given this, the range of estimates is quite impressive,
from a low of .039 (the combination of distribution ¢ and change model 2) to a
high of .112 (distribution a and change model 3). That is, under these varying
conditions the effect of a unit mean change in the explanatory variable raises the
aggregate percentage for some outcomes from between 3.9% and 11.2%—a fac-
tor of almost three. These are by no means the limits of potential variation. The
variations are due to the assumption of the logit model that all individuals are not
equally changeable (i.e., those whose probabilities are near .5 are more volatile
than those near the extremes). Thus, the extent of aggregate impact depends on
whether the initial distribution has a large number of “variable” individuals and
on how the changes in the independent variable are distributed among individu-
als. For example, the column labeled 1 in Table 1 presents the aggregate impact
of a uniform change in an explanatory variable in each of the four initial proba-
bility distributions. As can be seen, the aggregate effect of .105 in the bell-
shaped distribution, which has the highest concentration of individuals near .5 in
initial probability, is larger than in the uniform distribution (.083), which is in
turn larger than in the U-shaped distribution of initial probabilities (.045). The
impact for the skewed distribution is .096, falling as one would guess between
the bell-shaped and uniform conditions. These patterns confirm the intuitive hy-
pothesis in voting behavior studies that the heavier the concentration of “swing
voters,” the greater the impact that change in an explanatory variable should have
on the aggregate outcome.

In column 2 in Table 1, change in the explanatory factor is not uniform, but
proportional to the initial probability, and hence asymmetric. Since the first three
distributions of initial probabilities are symmetric, however, the aggregate logit
impacts are only slightly different from those for uniform change (combinations
a.2—c.2), usually smaller. Unlike the case for the symmetric distributions, the
impact for the skewed distribution (combination d.2) is largest among all distri-
butions for this type of change.

The last column in Table 1 describes the situation where change in the ex-
planatory variable is concentrated toward the middle of the initial probability
distribution. For each distribution, the aggregate impact is larger than in previous
columns. This is because change in the explanatory factor is concentrated among
the more volatile cases near P, = .5. Otherwise, effects remain in roughly the
same rank order as in previous columns.

A Predictive Evaluation: The 1972 and 1976 Presidential Elections

Having derived our aggregate logit impact measure and demonstrated its
sensitivity to various distributional factors, we now turn to a substantive appli-
cation. We use the National Election Study (NES) panel data from the 1972 and
1976 U.S. presidential elections to illustrate the computation and interpretation
of our measure and to compare it with the parallel measure for the linear
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probability model in equation (6). A panel data set is especially useful for the
purpose of validation because, unlike the usual cross-sectional situation, all the
information needed for equation (12), including the actual changes in each inde-
pendent variable, is known. Thus, we may compare the predictions of the linear
and logit model measures against each other and against the actual aggregate
change across the panel waves.

In the panel sample, 68.8% of respondents reported voting for Nixon in
1972, while 54.4% reported voting for Ford in 1976.1° Our task is to account for
as much as possible of this 14.4% change in the aggregate level of the Republi-
can vote and to determine which variables contribute most to this overall net
change. For illustrative purposes, we simplify our explanatory model to include
only three variables prominent in many electoral analyses: the respondent’s party
identification, presidential job approval (of Nixon in 1972 and Ford in 1976),
and the difference in the respondent’s “fecling thermometer” ratings of the Re-
publican and Democratic candidates in both election years.!! All variables were
coded so that higher numbers indicated pro-Republican attitudes. Party identifi-
cation ranged from zero for “strong Democrat” to six for “strong Republican”;
presidential approval was a dichotomous variable coded as zero for “disapproval”
and one for “approval”; and the thermometer score difference ranged from — 100
to 100 in strength of feelings toward the Republican candidate relative to his
Democratic opponent.

Table 2 shows the means for each variable in 1972 and 1976, and the differ-
ence between these figures represents the average change for the variable be-
tween the two elections. As can be seen, party identification in 1972 averaged
just over three on the seven-point scale and became slightly more Democratic in
1976, while the two other variables were strongly pro-Republican in 1972 and
changed more significantly in the Democratic direction by 1976.

What was the contribution of each variable to the overall change in the Re-
publican share of the vote between 1972 and 1976? To answer this question, we
first estimate both a linear probability and a logit model to predict the probability
of an individual voting Republican in the 1972 panel wave. We then use equa-
tions (6) and (12) to calculate, for the linear and logit models respectively,
the estimated aggregate impact of the changes in each independent variable ob-
served between the two elections. The results of these calculations are shown in
Table 3.

The OLS regression coefficients for the linear probability specification

"The 54.4% Ford vote is greater than the 50.2% vote reported in the entire 1972-76 panel data
set. The discrepancies are due to differential rates of panel attrition and to exclusion from the analysis
of all respondents who were missing on any of our explanatory variables.

"'The variables in the 1972-76 NES panel study (ICPSR 7010) were: party identification—
v140 (1972) and v3174 (1976); presidential job approval—v221 (1972) and v3135 (1976); thermom-
eter scores—Nixon, v255; McGovern, v254; Ford, v3299; Carter, v3298.
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Table 2. Changes in Variables Predicting Presidential Vote, 1972-76

Variable 1972 Mean 1976 Mean Change
Vote .688 .544 —.144
Party ID 3.009 2.976 —.033
Incumbent approval 756 .691 —.065
Thermometer difference 22.385 3.865 -18.52

Source: NES 197276 Panel Study.

Table 3. OLS and Logit Impact Estimates from the 1972-76 Panel

Variable OLS b OLS Impact Logit b Logit Impact
Intercept .287 — —1.265 —
Party ID .040 —.001 .453 —.006
Approval 228 -.015 .491 —.004
Thermometer difference .0049 —.091 .071 -.101
Rr? .62 .70°
Explained change -.107 —.111
Residual change —.037 -.033

Total change —.144 -.144

N = 340

“The squared correlation between the observed (dummy) outcome and the predicted probability.
Source: NES 1972-76 Panel Study.

appear in the first column of the table. Following equation (6), we multiply the
coefficient of each independent variable by the corresponding change in its mean
to obtain its estimated aggregate impact on the probability of the vote for the
Republican; these estimates appear in the second column. Thus, in the linear
model, party identification contributed —.001 to the — .144 Republican loss be-
tween 1972 and 1976 (multiplying the coefficient .040 by the mean change of
—.033). Presidential approval contributed —.015; and the thermometer score
differences, —.091. Summing % figures vields a total predicted change of
—.107, or a 10.7 percentage point decline in the Republican vote. The predic-
tion differs from the actual change by 3.7 percentage points, indicating the
change between the two elections- attributable to omitted variables and other
sources of specification error.

The next two columns of Table 3 are the corresponding figures for the logit
model. The logistic regression coefficients for the 1972 election are found in the
third column. To compute the aggregate logit impact measure for each variable
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according to equation (12), we utilize the logit coefficients, the estimated indi-
vidual probabilities from the 1972 model, and the individual 1972-76 change
scores. The SPSS commands we used to perform these calculations are shown in
Appendix A. The logit impact estimates for each independent variable are shown
in the fourth column of Table 3.!2. According to these calculations, changes in
party identification contribute —.006 (—0.6%) to the vote shift; changes in pres-
idential approval contribute —.004; and changes in the thermometer difference
measure contribute —.101 to the vote shift. The changes in the three variables
together yield a total of —.111 in the overall predicted difference in the probabil-
ity of voting Republican in 1976 compared with 1972. This prediction is slightly
closer to the actual —.144 value than the OLS estimates. More important, the
total predicted change calculated from the individual logit estimates exactly re-
produces the results of applying equation (7) to calculate the aggregate effect of
changing all variables simultaneously, or equivalently, the results of applying the
1972 logit model directly to each individual in the 1976 wave of data and com-
puting the mean change in vote probabilities. Thus, our measure fully captures
the predictable portion of change in the mean dependent probability.

The choice of specification has a more significant effect on the assessment
of different variables’ relative contributions to change in the level of the depen-
dent variable. While both models indicate that changes in thermometer difference
scores accounted for the largest portion of change in the dependent variable, the
logit specification indicates that party identification has six times greater impact
than in the linear model, while presidential approval has less than one-third the
overall impact it does in the linear specification. There is no simple explanation
for these differences; we found a quite complicated relationship between pre-
dicted prior probabilities and changes in each independent variable at the individ-
ual level. We can only reiterate the need for an estimation strategy that does not
assume that only a variable’s mean change is important for predicting its impact
on aggregate change in the dependent variable.

Constructing Predicted Impacts in Practice

In this section, we consider how to estimate aggregate logit impacts in prac-
tice, depending on the amount of information available to the researcher. In gen-
eral, making assessments of aggregate change requires three steps:

1. Estimate the logit model to obtain coefficients and predicted prior prob-
abilities. The predictive power of model should be as high as possible,
since reasonable predicted probabilities are crucial.

2Appendix A shows commands only for the party ID and incumbent approval variables. The
individual changes in the thermometer scores were so large in some cases that we employed a piece-
wise procedure in SAS to arrive at the predicted changes in probabilities. We explain this problem
and the piecewise procedure more fully in the next section.
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2. Measure changes in the explanatory factors of interest, or select a model
for imputing such changes. Imputation may employ one of the models
we used in our hypothetical example, or may imply change only in cer-
tain subgroups of a sample.

3. Compute the impacts as in equation (12). The ingredients for the calcu-
lation are the logit coefficients, predicted initial probabilities and indi-
vidual changes. The computer commands in Appendix A first compute
terms for individual cases as in equation (11); a descriptive procedure is
then used to produce the required average impact for the entire sample.

We constructed the preceding example, with its use of data from a second
panel wave, in order to validate our assessment of impacts against a future aggre-
gate outcome. When actual change data are available, a precise accounting of
absolute and relative aggregate impacts may be obtained. In applications using
only cross-sectional data, empirical information is available for step 1, but not
for step 2. In that case aggregate impact assessments require a model that
matches (imputes) individual-level changes in explanatory factors to prior prob-
abilities estimated within the cross-section. A generalization of the method we
used in the numerical simulations is contained in the following model:

A%, = a, + a,P, + a,D;, + a,P.D, (14)

where P, is an individual’s initial probability as before, and D, is a dummy indi-
cator for membership in a particular subgroup. The choice of particular values of
the coefficients will determine the mean change in the given explanatory vari-
able. The coefficient a, denotes uniform change across the entire sample; a, de-
notes change proportional to initial probabilities across all subgroups; a, denotes
uniform change within the subgroup only; and a, denotes potential interaction
between initial probability and subgroup membership. For example, if an ex-
planatory variable changed in the aggregate by five units, a uniform change
model would specify a, = 5 and all other coefficients equal to zero. A five-unit
change restricted only to Democratic identifiers, for example, would imply a, =
0 and a, = 5. Of course, the imputation model may contain more variables and
greater complexity of functional form if desired.!

Whenever possible, the researcher should choose a theoretically informed
model of change in the independent variable. For example, certain macrolevel
events such as war may exert a relatively uniform effect on changes in individu-
al’s ratings of presidential performance (a; # 0). In other instances, change

BPredictions of impact may be calculated in a very rough fashion without any individual-level
information, by combining published logit coefficients with actual or hypothetical information about
both the distributions of prior probabilities (step 1) and changes in independent variables (step 2)
gleaned from other sources. The quality of the information that is utilized must be fairly high to make
such predictions meaningful.
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related to prior probability (a, # 0) is frequently plausible, as when changes in
independent variables are related to prior ideological and policy preferences. For
example, successful management of the economy may bring an overall increase
of approval for an incumbent candidate, but individual increases may be strongly
related to prior evaluations and partisan dispositions that condition original pro-
pensity to vote for the incumbent. In a more extreme case, all of the increases in
approval might be hypothesized to occur among individuals who identify with
the incumbent’s party, or who otherwise have a strong propensity to favor the
incumbent (a, # 0). Our general point is that impact assessments should be
structured in accordance with the type of variable involved and the most appro-
priate theoretical model of change.

One final point concerning the accuracy of equation (12) applies to all of the
situations we have described in this section. The approximation for change in
each individual P,, and hence for the aggregate change, depends on Ax; being
“small” relative to the magnitude of the logit coefficient b,. In practice this
amounts to the restriction that b,Ax, be no more than .5. We illustrate this with
Figure 2. In this figure, the change in P, is predicted as a continuous function of
b; times the change in x;, when P, is equal to 0.1, for the first-, second-, and
fourth-order Taylor series approximation (m = 1, 2, and 4, respectively). We

Figure 2. Predicted Change in Pi for Taylor Series
Approximation of Order m; P;i = .1
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can see that the second- and fourth-order approximations are virtually equal in
the range —.5 to .5. This empirical convergence of the approximation is not,
however, formal convergence in the sense that each successive term in the ap-
proximation series declines in magnitude for any Ax,; for larger changes, the
curves begin to diverge rapidly, and the Taylor approximation is only valid as an
infinite series. When change in the independent variable exceeds this range re-
striction, we recommend computing the change in successive pieces, by chang-
ing x, by small increments (at most .5/b), and cumulating the corresponding
increments in P,, recomputing P, each time using the logit equation (2). We were
required to do this in our computations for the impact of thermometer difference
scores. The programming algorithm we used in SAS to produce our estimate is
presented in Appendix B.

Discussion: OLS and Logit (and Probit) Compared

One of the major points of our analysis of the logit model is the high level
of specificity necessary for comparisons between baseline and new samples. If
the correct underlying model for individual outcomes is in fact linear, all aspects
of the distribution of the individual P, and changes in x,, except their means, are
irrelevant, as demonstrated in equation (6). If the correct underlying model for
individuals is instead the logit model, aggregate impact is not indifferent to these
distributions, as we have shown in equation (12) and in the simulations. Much
research, such as that cited earlier, has made deliberate use of the linear probabil-
ity model as a simplifying approximation to an underlying logit model in order
to make estimates of aggregate impact. We then should consider under what con-
ditions the linear estimate would essentially duplicate the logit estimate.

One obvious situation where the two methods converge in prediction of ag-
gregate impact is when the linear and logit models are indistinguishable at the
individual level. This occurs when all individual dependent probabilities are con-
centrated in the 30%—70% range, and hence the deviations from linearity pre-
dicted by the logit model are trivial. For cases where the two models do differ
substantially at the individual level, we explore other possible situations of con-
vergence at the aggregate level by way of the uniform change model. This model
provides a bridge to the usual definition of the OLS slope as the average effect of
changing x, by one unit. Inserting a constant change of A, for each individual
into equation (12) implies that:

i 1
* = p - - P) A%
AP; anRu P) A%, s)

+%w%230—mu—wmgy

But since AX is a constant, it can be moved outside both summations. Without
this source of variation, the second summation is equal to zero whenever the P,
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are distributed symmetrically around .5. In that case, the previous equation re-
duces to:
- 1 1 dapP

AP = ijzzi b,P(1 — P) = ij;Z E, (16)
The last term in this equation is the average linear effect of a small increase in x;,
for the logit model, which would be the interpretation of the slope from the linear
probability model. So under these conditions, the linear estimate of aggregate
impact would be an adequate approximation of the logit measure. We reiterate,
however, that this connection between the linear impact and the logit estimate for
uniform change relies on three distinct restrictions: (1) a symmetric distribution
of initial P;; (2) averaging the nonlinear effects of x, over the observed sample of
P; and (3) uniform change in Ax,. Each of these restrictions implies a different
cost in substituting a linear approximation for the logit model.

The condition of symmetric P, can, of course, be verified in any particular
analysis. The linear impact estimator can still come close to the logit estimator if
the deviations from symmetry are minor, or if a different change model somehow
compensates by chance. Both our simulations and our example, however, indi-
cate that the differences may indeed be substantial. We know of no method to
determine the degree of closeness between the two estimators a priori, but it
seems reasonable to assume that whatever calculations would need to be done
would be at least as involved as simply calculating the logit estimates from equa-
tion (12) directly. The sample specificity implied by condition (2) reiterates the
well-known point that the linear approximation to the logit model depends criti-
cally on the underlying variability of individual probabilities (Hanushek and
Jackson 1977, 185). Hence, a linear model from one symmetric distribution is
unlikely to generalize accurately to another, for example, from a unimodal to a
more polarized distribution of vote propensity. Aggregate impact assessments
derived from linear probability models inherit this sample specificity directly.

We noted in the previous section that the uniform change assumption is not
the only, nor necessarily the most plausible, change model from which to con-
sider aggregate cross-sample comparisons. In most empirical situations, uniform
change will be the exception rather than the rule. Our analysis of the 1972-76
NES panel data, for example, showed large variations in individual change in the
independent variables. In addition, the changes in presidential popularity and
candidate thermometer ratings were related to the individual’s probability of vot-
ing Republican in the first wave. To the extent that individual changes differ
widely and are correlated with initial probabilities, then the uniform change
model, and hence the linear impact estimates, becomes less and less relevant.

Finally, we address the somewhat similar probit model. Our use of the
Taylor series approximation is generally appropriate for any nonlinear model.
For the probit model:
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P, = ®(b'x) am

where &(z) is the standard normal cumulative distribution function. The equiva-
lent to equation (11), giving individual contributions to the aggregate impact, is:

1
AP} = b0()Ax, — 5 bz P(z)Ax; (18)

where ®(z) is the standard normal probability density function and z, = b'x. The
logit and probit models are known to be highly similar except for the scale of
parameters (Aldrich and Nelson 1984, 30—47), and we do not expect substantial
differences in impact estimates between the two.

Conclusion

We hope that readers of this paper will take away three points. First, aggre-
gate impact analysis offers another means of assessing the “importance” of ex-
planatory variables, aside from examination of unstandardized or standardized
regression coefficients (Achen 1982; Lewis-Beck and Mohr 1976; Stover 1987).
Researchers often are interested in how aggregate outcomes are affected by
changes in the distributions of individual independent variables. We argue here
that such questions imply the comparison of an observed sample with an alter-
native sample, either hypothetical or actual.

Second, aggregate impact estimates based on a Taylor series expansion of
the logit model are available and intuitively meaningful, if more complicated to
calculate than their linear counterparts. In order to estimate the impact of explan-
atory variables on aggregate shifts in the dependent variable in logit models, the
researcher must take into account the variation in individual change in an inde-
pendent variable and the relationship between change and initial probabilities. If
the procedure is applied to cross-sectional data, the method can be used to make
out-of-sample predictions of the aggregate shift in the dependent variable by
specifying a theoretically meaningful pattern of individual-level change in an
independent variable. It may then be used to assess the relative importance of
different independent variables by estimating the change in dependent probabili-
ties accounted for by each variable. If this procedure is applied to panel data, all
the necessary information on change in independent variables is observed.

Third, researchers should not generally employ linear probability models to
approximate aggregate impact in contexts when logit models are substantively
more sensible at the individual level. In those cases, the linear model can be
expected to approximate the logit estimates accurately when individual probabil-
ities are symmetrically distributed and individual change in independent vari-
ables is uniform across the distribution of initial probabilities. We think this com-
bination of circumstances will be rare in practice.

While our exposition has focused on electoral behavior, this type of analysis
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may be applied whenever aggregate outcomes are of substantive interest, as in
social demography or cross-national comparative analysis. Our approach can
also be expanded beyond cross-sectional and two-wave panel analyses. Aggre-
gate impact analysis may be even more fruitfully exploited in multiwave pooled
cross-section and other longitudinal designs, where data are available for many
intersample comparisons. Development of procedures for such applications
should be a focus of future research.

Manuscript submitted 14 May 1991
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APPENDIX A
SPSS Algorithm for Computing Aggregate Logit Impact Measure

We assume that the data contain predictor variables P, A, and T, change scores CH_P and
CH_A. Probabilities computed from logit model are saved as PRED_Y. Aggregate impacts for party
identification (P) and approval (A) are calculated below. A more accurate algorithm is needed for the
impact of thermometer differences; that algorithm is given in Appendix B (see text).

logistic regression VOTE72 with P A T /save pred (PRED_Y).

* insert logit coefficients into the following equations.

compute P_IMP = .453*PRED_Y*(1-PRED_Y)*CH_P
+.5%((.453)**2)*PRED_Y*(1-PRED_Y)*(1-2*PRED_Y)*(CH_P**2).

compute A__IMP = .491*PRED_Y*(1-PRED_Y)*CH_A
+.5%((.491)**2)*PRED_Y*(1-PRED_Y)*(1-2*PRED_Y)*(CH_A**2).

descriptives P_IMP A_IMP.

APPENDIX B
SAS Algorithm for Computing Piecewise Changes in Probabilities

As in Appendix A, we assume that the data contain predictor variables P, A, and T, change
score CH_T. Probabilities computed from logit model have already been saved in this data set, as
PRED_Y. In this algorithm, thermometer differences (T) are allowed to change only a little at a time.
New probabilities are computed incrementally until the full change due to CH__T is accumulated.

data logit2; set nes.logitl;

* logit coefficients;

b_0= —1.265; b_p=.453; b_a=.491; b_t=.071;

* piecewise loop for thermometer differences—individual cases;

cdx = 0; * cdx = cumulative change in x;

cdp = 0; * cdp = cumulative change in probability;
newp = pred_y; * set dependent probability = initial probability;
do until (cdx =ch_t); * repeat loop until x changes entire amount;

dx = min(ch_t-cdx,.5/b_t); * change x by at most .5/b;
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cdx =cdx +dx; * add current change to cumulative change;

dp =b_t*newp*(1-newp)*dx; * first term of equation (11);

dp=dp +b_t*dp*(1-2*newp)*dx/2; * add second term of equation (11);

cdp=cdp+dp; * add this increment to cumulative change in prob-

ability;
z=b_0+b_p*p+b_a*a+ * update logit with new value of x;
b_t*(t + cdx);

newp = 1/(1 + exp(-z)); * update probability;
end; * end of loop;
t_imp = cdp; * impact is cumulative change over all increments;
run;

* compute mean of individual changes;
proc means mean; var t_imp; run;
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