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Limited Dependent Variables: (Continued)

• So far concerned with one kind of limited dependent variable – non-

negative integer count outcomes which represent the number of times 

something occurs in a given time interval

• Poisson, Negative Binomial, Zero-Inflated depending on the 

distribution, the degree of overdispersion, and the assumed data-

generating process for the 0s 

• There are other kinds of limited dependent variables, however

• Consider:  situations where we have a linear relationship between X 

and a continuous Y* (latent variable) – unlike the count situation where 

the true dependent variable is non-continuous – but we do not observe 

all of Y* for some reason or another  

• That is, Y (observed) is not the complete Y* but some non-continuous 

portion of it

• Most prominent examples: censored data and sample-selected data 
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• Censored Data

– We observe the true Y* for some values, but for other values that 

don’t make it past some threshold (τ) you only observe one value, 

usually the threshold value itself

– Example:  Student Final Exams.  Failure is 60 and you don’t record 

anything below that.  So you have a bunch of 60s which really 

represents any value below 60. Anything above 60 receives the true 

value, below 60 receives a 60.  This is a censored variable, with the 

censoring value being the threshold below which true values are not 

recorded.  

– This is called “censoring from below”; there can also be “censoring 

from above” (demand for concert tickets, e.g.), or both

– Thermometer ratings -- people at 0 feel various degrees of extreme 

coldness toward the stimulus, people at 100 feel various degrees of 

extreme warmness, so have a double threshold model here, 

censored at 0 from below and 100 from above
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• In all of these cases, there is a Y* which is continuous but an 

observed Y which is not identical to Y*, due to some aspect of 

the measurement scheme or some aspect of “reality” (the 

capacity of the stadium, e.g.) which prevents the full range of Y* 

from being realized

• Note:  this is related but different from the latent variable Y* 

situation in probit.  In probit we had a continuous Y* but we 

only observed 0 or 1 depending on whether the case made it past 

the threshold τ, which we arbitrarily set to 0.  Here we know the 

full Y* if the case makes it past τ (if there is censoring from 

below), and the value of the remaining cases which do not make 

it past the threshold are usually set at τ, which can be 0 or may 

not be (if it is 0 the math is easier, though!)

PS2730 MLE CatLimModels, Fall 2021                                                                                                                  4



• Second way that the observation of Y* might be limited: we only 

observe Y* if it is above a threshold on some other variable, not Y* 

itself.  In censored example, if the exam grade is >60, we observe the 

exact score, and if not, we observe 60.  In another kind of situation, we 

observe, for example, reported participation in politics in a survey only 

if the respondent decided to answer the survey.  So there are a set of 

factors that lead individuals to be selected into the observation 

sample, and only if those factors put you over a threshold τ do we 

observe Y* in the data. Otherwise we don’t observe a value for Y 

• This is called “sample-selected” data.

• Example:  You want to model how education affects voter turnout in 

the US, and examine a sample of individuals who are registered to vote.  

Since registered individuals are already much more likely to vote than 

average individuals, *and* since registration depends on education and 

a host of other factors that may be related to education, the estimation 

of turnout on education in the registered sample will not represent the 

true effect of education on turnout

PS2730 MLE CatLimModels, Fall 2021                                                                                                                  5



• Can see the problem here:  the observation sample Y is a potentially 

non-random sample of Y* in the population, so estimating the effect 

of any independent variable X on Y in the sample will lead to 

potentially biased estimates of the effect of X on Y* in the population 

(which is our true goal)

• The sample-selection problem relates more generally to problem of 

estimating treatment effects when the assignment to the treatment is 

not random. This is a common situation in social science.

• Example:  Estimating the effect of accepting public funding on state 

legislative candidates’ success – but candidates who accept public 

funding are weaker and would not succeed as much, independent of 

funding – So if we regress outcome against public funding, we obtain 

a negative relationship but not due to public funding.

• Will start with censoring where don’t observe Y* in all cases, then 

relate them in Unit 4 to treatment effect models where we have all Y* 

but with non-random selection into treatment
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• With censoring (or sample-selection), using OLS to estimate effects of X 

on Y will lead to biased inferences whenever factors of interest are 

related to the probability of censoring or of being in the observation 

sample.  

• Solution: model the two stages of the process.  For censored data:  

probability of being censored is one stage, and the value of Y, 

conditional on not being censored is the second stage.

•   (For sample-selected data, probability of being observed on Y is one 

stage, and modeling Y, conditional on having been observed, is the 

second stage.)
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Modeling Censored Data

• Example:  The true relationship between political knowledge (X) and 

political tolerance (Y*) in the South African data
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• What if the lowest recorded value of tolerance was 0?  Anybody 

who scored lower than 0 on the scale during the interview was 

coded as 0 in the data set (for whatever reason)

• Then we have 361, or 38.4% of all observations censored from 

below at 0

• For the remaining 579 cases, censored tolerance=tolerance, or Y*
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• What happened?

• Censored data put a “floor” on the dependent variable at 0, so OLS 

tilted to be flatter.  Regression coefficient went from .052 to .038, a 

27% decrease in magnitude!

Red=Y*

Orange=Censored Y*, 

Observed Y
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• Can also see the effects of censoring from above.  Consider a salary 

data set where the salaries are recorded up to $4000 and then only 

$4000 for all salary at that point or above.  We regress education on Y* 

(true salary) and then education on Y (censored salary)

Same issue:  regression 

coefficient for true salary 

is 312.7; for censored 

salary it is 194.5
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• Problem in first graph:  Low X is positively related to the probability 

of being censored; so low knowledge individuals are more likely to 

not have Y* recorded and to see 0 instead; so the effect of X on 

censored Y is dampened, since low X has *even lower* Y* than was 

observed as Y

• More formally:

– X is negatively related to P(censored)

– OLS on censored variable will be linking E(Y|X) which is not 

E(Y*|X)

– Since X figures (negatively) in the censoring process, E(Y|X) will 

be greater at low levels of X than the true E(Y*|X)  and this will 

push the regression line upwards at low levels of X, thus 

dampening the β regression coefficient

– Suggests we need to find a way to “add back” the difference 

between E(Y*|X) and E(Y|X) to the estimation
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• Problem in second graph:  high X is positively related to the probability 

of being censored; high educated individuals are more like to not have 

Y* recorded and to see 4000 instead; so the effect of X on censored Y is 

dampened, since high X should see *even higher* Y* than was observed 

as Y

• So E(Y|X) at high levels of X will be lower than E(Y*|X); this also 

dampens the β effect of X on Y compared to the true effect of X on Y*

• Solution:  think of the process as two-stages -- model the probability of 

being censored, and then model Y* among the non-censored cases.  

• But we need to take the first stage into account to get correct estimates 

of the second stage!

• This was the contribution of Nobel economist James Tobin, who 

developed “Tobit” model (“Tobin’s Probit”) to handle censored data
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The Tobit Model

• Tobit model linking Xs to Y* and then to observed Y

• This is a linear model linking X to continuous Y*.  Now we map to 

the observed Y via the “measurement model”.  If Y* is above a 

certain threshold, we observe Y*; if Y* is below a threshold, observed 

Y will be the threshold value

• This is just like the probit model with a measurement twist (right?)
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• Assume τ=0: it is the case in many applications, and it is much easier to 

deal with mathematically (but it is not intrinsically necessary)

•  Then

• We want to model the expected value of Y conditional on the X, as we 

do it all regression models.  How does E(Y) change as a function of X?

• With censored Y, the conditional expectation of Y becomes

• The conditional mean of Y, given X, is equal to the probability of Y 

being beyond the threshold, multiplied by the average value of Y past 

the threshold, plus the probability of not being past the threshold, 

multiplied by the threshold value (which is 0, so this part will fall out)

• Can see the two stages of the model (right?)

Y
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Y
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E(Y | x) = P(Y > 0 | x)*E(Y |Y > 0,x)+ P(Y = 0 | x)*0
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• We’re going to model two things:  P(Y>0), and then E(Y|Y>0) as a 

function of the Xs

• Will see formally all the intuitive problems we’ve pointed out about 

not correcting for the censoring process

Latent

Y*=XB + e

E(e | X ) = 0,E(e 2 ) = s 2

Observed
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i
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E(Y | X ) = P(Y > 0 | x)*E(Y |Y > 0,X )
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• Begin with P(Y>0) portion of the model

• Under standard probit assumptions that ε is normally distributed; 

since we have information on Y* we don’t need to set the variance to 

be 1 but can estimate it (see previous slide)

P(Y
i
> 0) = P(Y*> 0) = P(XB+ e > 0)

P(Y
i
> 0) = P(e > -XB) = P(e < XB) = F(XB)

This gives the probability of  

being anywhere over the 

threshold, as in regular probit.  

But we can do more since 

we know the Y* for all of  the 

“over the threshold” cases
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• Now, what about the E(Y|Y>0) part of the model?  That is, given that 

Y is above the threshold, what is its average value, conditioned on the 

Xs?

• Think about that portion of the distribution over the threshold:  it is a 

“truncated normal distribution” – a normal distribution with some 

portion cut off and deleted (the portion at or below 0 or whatever τ is)

• In a truncated normal distribution:

• That is, the expected value of Y, conditioned on X is equal to the “true” 

mean of Y*, conditioned on X, *plus* an additional term which equals 

the average error term, conditioned on X, among the units greater than 

the threshold.

• While E(ε|x)=0 in the entire Y* distribution (see previous slide); it 

cannot be zero in a truncated distribution since we are focusing on 

that part of the distributed greater than some threshold value (0)

E(Y |Y > 0,X ) = XB+E(e |Y > 0,X )
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E(Y |Y > 0,X ) = XB+ E(e |Y > 0,X )
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= "Inverse Mills Ratio"

So: E(|Y>0, x) in a truncated distribution with a normally 
distributed error term with variance σ2 is:  σ * ϕ/Φ (with the 
last term being the “INVERSE MILLS RATIO,” (IMR), the most 
important new statistical quantity for these kind of models. 
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• IMR is the height of the normal curve evaluated at a given point XB, 

divided by the cumulative probability of being uncensored. (This 

works out nicely because the threshold was set to 0)

• When IMR is large, it means that: at a given point XB, there is more 

truncation, as the probability of being uncensored (the denominator) is 

smaller.  This happens when XB puts the mean closer or under the 

threshold.  Then the pdf in the numerator divided by the cumulative 

cdf in the denominator gets big.

• As XB puts the case farther from the threshold, there is less truncation, 

denominator is bigger, pdf in the numerator also smaller.  So low IMR.

• So the size of the IMR, weighted by the standard deviation, is the 

difference between E(|x) from the Y*  and E(|Y>0,x)

PS2730 MLE CatLimModels, Fall 2021                                                                                                                  21



PS2730 MLE CatLimModels, Fall 2021                                                                                                                  22



So when KNOW is high, fewer censored observations, and gap between 

E(Y|X) and E(Y*|X) is smaller

When KNOW is low, more censored observations, and gap between between 

E(Y|X) and E(Y*|X) is larger 

That means the IMR at KNOW=8 is smaller than the IMR when KNOW=0
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• Putting this together gives the censored regression model:

• Which is the probability of being uncensored, multiplied by the 

expected value of Y, given that the unit is uncensored

• When IMR →∞, the probability of being uncensored is smaller and 

smaller, so the expectation of Y converges to the threshold 0

• When IMR→0, the probability of being uncensored is larger and 

larger, so the expectation of Y converges to XB, as it would with Y*

• We want to estimate this model to correct for the problems caused 

by censoring.  Two methods:  two-step tobit, and MLE 

E(Y | X ) = P(Y > 0 | x)*E(Y |Y > 0,x)+ P(Y = 0 | x)*0
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Two-Step Tobit

• See that the estimation is essentially an omitted variable problem.  We 

need an estimate of the IMR (ℷ) which can correct the bias in OLS 

estimates on the censored data and recover the “true” β

• Parenthetically: can see that if omit the IMR from consideration and 

just estimate OLS on the censored data, X will be intrinsically related 

to the error term (which would then include ℷσ).  If X is negatively 

related to the probability of being censored (as it is in our case), we 

have a negative relationship between X and the composite error term.  

• Again, that’s why OLS underestimates the “true” relationship

• So correcting for “endogeneity” due to omitted variable bias is 

another way of looking at tobit! (We’ll look at endogeneity further in 

Units 3 and 4)
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• Procedure:

1.  Run probit on all cases to generate Φ (probability of being 

uncensored) and ϕ, pdf associated with XB.

2 .  Use estimated Φ and ϕ to calculate the IMR for each case

3. Run OLS on cases where Y>0 as Y=XB+σ*IMR

• This is running a probit to obtain estimates of IMR, and then 

inserting that estimate into the equation for Y>0 as an omitted 

variable correction in order to recover the true coefficients

• Makes intuitive sense, but it is less efficient than ML estimation

• Standard errors in the two-step procedure need to be corrected
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• Maximum Likelihood Tobit

• Divide the observations into two sets:  the censored cases, and the 

uncensored cases, and see what each contributes to the likelihood of 

having observed the sample of Ys that we did observe

• See Long, p.204

3 cases:  x1 is censored on 

y (y*<0); and x2/x3 have 

observed y as Y*

What do each contribute 

to the overall likelihood 

function?
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• For x1, we only know that it is censored on y, so we can’t 

calculate a pdf (height of the normal curve).  We can only 

calculate the probability that it was censored given x

• Since

• Summing over all the censored observations and taking logs:
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• For uncensored observations x1 and x2, their contribution to the 

likelihood function is the height of the normal curve evaluated at XB, 

just like in normal regression

• Putting together for all cases, censored and censored gives the Tobit 

Likelihood function, which is maximized wrt β and σ as usual
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• Coefficient for knowledge is .049, *much* closer to the “true” value of 

.051

• Corrects for the biasing effect of censoring at 0 for the 361 censored 

cases
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Interpretation of Tobit coefficients
1. Effect of X on Y* = β.  This is what we want to obtain, the recovery 

of the “true” β in the context of a partially censored sample. what we 

wanted.  Can also use LISTCOEF to get standardized Y* estimate

• So one additional unit of KNOW changes E(Y*) by .10 standard deviations 

(.049/.485), and a standard deviation change in X (1.94) units changes 

standardized Y* by (.049*1.94/.485)= .196

• Here you can add additional variables and don’t need the KHB method since 

Y* variance is fixed, estimated from the uncensored part of the distribution
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2. Marginal Effect of X on Y for exceeding the threshold and being 

uncensored  = P(uncensored)(1-P(uncensored)*β.                          = 

Φ(XB/σ)(1- Φ(XB/σ))* β

This is the effect of very small changes in X on the probability of being 

uncensored, and is the slope of the tangent to the probit curve predicting being 

uncensored, evaluated at XB.  Reaches its maximum value when probability of 

being uncensored (or censored)=.5  

Can also use discrete change as appropriate 

3. Effect of X on actual Y = β* Φ (XB/σ)= Probability of being uncensored 

multiplied by  β.   This is the effect of changes in X (marginal or discrete) on 

the expected value of Y (which is censored), not Y*.  

Can see that as probability of being censored increases, the effect of a 

unit/marginal/standardized change in X on actual (censored) Y is very low, 

because the change won’t be enough to put the case past the threshold so will 

likely keep it as 0.  Similarly, when P(uncensored)=1, the effect is β, because 

the case is already over the threshold.
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McDonald Moffit Decomposition

• One well known quantity in Tobit regression is the “McDonald-Moffit 

Decomposition”, which takes the effect of X on actual (censored) Y -- see 

previous slide – and decomposes it into two parts:

a)  the average marginal change in Y for cases over the threshold, weighted by 

P(uncensored)

b) the marginal change in P(uncensored), weighted by average (expected) value of Y 

for those cases over the threshold

– Stata   (2)  (3)  (4) (1)
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– Stata   (2)  (3)  (4) (1)

• So first part (Stata do file parts 2 and 3) gives the effect of the 

marginal change in X on the expected value of Y for the 

uncensored cases, weighted by the probability of being 

uncensored, and the second part (Stata parts 1 and 4) gives the 

effect of the marginal change in X on the probability of being 

uncensored, weighted by the expected value of y for the 

uncensored.  

• Put Xs at their mean and calculate this quantity, then see which 

one is bigger effect. (See this week’s do file for an example).
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