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Limitations of the Poisson Model for Count Data

• Limitations of Poisson regression: variance of count distributions often 

does not equal the mean, and Poisson models often do not account 

sufficiently for the number of 0s in the data

• Problem of overdispersion in count distributions limits Poisson 

regression; occurs because of contagion effects (where the outcomes 

are not independent), or due to unobserved heterogeneity across units, 

where factors that are not included in the model are producing higher 

variances for a given conditional mean based on the Xs

• Overdispersion problem is addressed (potentially) with the Negative 

Binomial Model, which allows for a heterogeneity term in the 

distribution (similar to a “random effect” in panel analysis)

• Problem of “too many” 0s is complicated; solutions depend on 

assumptions about the data generating process that produces 0s versus 

positive counts.  Possible solutions:  Zero Inflated Models (which we 

will cover) or Hurdle Models (which we won’t except in passing)
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Negative Binomial Model

• Poisson model for the latent rate of occurrence of an outcome in a 

given time interval

• Negative Binomial Model:  adds an additional parameter to allow for 

unit-level unobserved heterogeneity in the expected count or latent 

rate.  In Poisson, all units with same Xs have the same expected 

count or rate; here we allow there to be some error due to 

unobservables that produces higher or lower counts for given units 

than expected from the observed X. 

• Estimate

      with εi representing the unit level error term in the latent rate

PS2730 MLE CatLimModels, Fall 2021

m
i
= E(y | X ) = expXB
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• Relationship to our original rate equation:

• NBR proceeds by identifying this model with the assumption that the 

mean of δ=1

• This means that we have the same average rate as in Poisson

• And the predicted counts still follow a Poisson distribution:
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• But: not straightforward to solve since δ is unknown

• We assume a distribution for δ to make some headway.  NBM assumes 

that δ follows a “gamma distribution”. Gamma is a distribution for 

positive outcomes governed by one parameter alpha which affects its 

shape.  When alpha (α) is very small, gamma looks like a normal 

distribution, when alpha is very big, gamma looks extremely skewed, 

like in Long 232, where v is 1/(α).

• So the negative binomial distribution results from a “mixture” of the 

poisson and gamma distributions

• So large v = small α = more normal; small v=large α = more skewed

• Then:

• Which is also the Pi for the likelihood function of the NBM
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• This leads to the same expected mean of the rate for Poisson and 

Negative Binomial, but a difference variance of the counts in NB:

• This allows the variance of the counts in the NB model to be greater 

than the mean, since both μ and v are positive

• As v →∞ (and α →0), then Var(y)= μ and we’re back at Poisson!

• In terms of alpha (or 1/vi), assuming common vi:

• So we have a model with same mean structure as Poisson, but 

increased variance governed by a gamma-distributed parameter v (α) 

to be estimated from the data.  The bigger α, the more the additional 

parameter adds variance to the counts, which will account for more 

0s and fewer high counts than Poisson
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• Suggests a test for whether the additional parameter α is needed, since 

inclusion will result in inefficient estimation should it not account for 

the distribution of counts better than Poisson (or, alternatively, 

increase the log-likelihood sufficiently).

• One test:  a one-tailed ”Z test” of H0: α=0, since  α must be positive

• Alternative test:  LR comparison of log-likelihoods for NB and 

Poisson as 

• which also tests whether α=0.  Also requires adjustment of p value 

since alpha can only be positive

• Other interpretations (predicted probabilities, effects of independent 

variables on expected rates, etc.) straightforward and similar to 

Poisson (with caveat that predicted P formula differs as on slide 5)

G2 = 2(lnL
NBRM

- lnL
PRM

)
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• Observed, univariate (no independent variables) and multivariate 

Poisson all underpredict 0 counts considerably; negative binomial 

model substantially better and less overprediction of high counts 

as well.  Looks like a better choice!
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Zero Inflated Models

• “Zero-inflated” models available if 0s are not simply prevalent in the 

data to a larger degree than Poisson or NB would predict, but rather if 

they are structurally different than positive counts

• That is, in some instances there may be groups of individuals/units that 

cannot be on 0, e.g. Long’s scientific productivity research where some 

scholars are not in jobs where research output is possible; or battle 

deaths from conflicts, where most countries or dyads are not (could 

not be?”) in a state of conflict ( so-called “peace zeros”–Bagozzi 2015)

• The 0s are “inflated” as a result, beyond what Possion or NB would 

predict

• Also: in these cases, we don’t know what a 0 actually is – a “structural” 

or “inflated” 0, or a 0 that is a normal prediction from a Possion or NB 

model

• So “Zero Inflated” Models developed to take this into account
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• Assume the population is made up of two groups

• People/units in group 1 are those who will always be 0 –                

what are called the “structural 0s”, and

• People/units in group 2 whose rates are generated by normal count 

processes, and which might include 0 counts in the given time interval

• Example:  number of fish caught as the DV; two groups of 0s – 

people who never fish, and people who are just bad fishermen

• We model the first group as a logit or a probit; the second as a 

Poisson or Negative Binomial

• The first equation is called the “inflation” equation; the second the 

”count” equation

• Put them together and you arrive at the Zero Inflated Poisson 

(ZIP) or Zero-Inflated Negative Binomial (ZINB), depending on 

the nature of the count equation
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Zero-Inflated Poisson (ZIP)

• Probability of being in Group 1, the “Always 0” group, is ψi, with the 

probability predicted by individual/unit-level independent variables

• Probability of a given count, for those in Group 2, assuming Poisson:

• With

IMPORTANT NOTE:  I’m using z and 𝛾 for the variables in the 

inflation equation and x and β for the variables in the count equation – 

they *can* be the same or they can be different, though
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Zero-Inflated Poisson (ZIP)

• Putting the two together gives the ZIP model

• With the equation predicting 0s consisting of probability of being a 

structural 0 plus the 0s from the Poisson-distributed count among the 

non-structural 0s, and the equation predicting positive counts consisting 

of the Poisson distributed counts for the non-structural 0 group

• In words:  ψ is the probability of an “excess” or “inflated” 0.

• If :  ψ=0, the inflation equation is just the Poisson predicted 0 counts 

and the whole model is just a Poisson regression
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• The conditional mean and variance in the ZIP differs from 

regular Poisson 

• Which says that the expected rate, given the Xs, is lowered by a 

factor ψμ, or the fraction of inflated 0s in the population

• The expected rate among those “eligible” for a non-zero count 

(i.e., not in the structural 0 group) is 𝜇

• The variance is the Poisson variance weighted by the size of 

Group 1:  the bigger the structural 0 group, the bigger the 

variance, relative to normal Poisson

• Again:  If ψ =0, everything reduces to regular Poisson!!!
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Zero-Inflated Negative Binomial (ZINB)

• Similar process if we think the count portion of the model has 

additional 0s as in the Negative Binomial model considered earlier, 

independent of the structural 0 issue

• Probability of being in Group 1, the “Always 0” group, is ψi, with the 

probability predicted by individual/unit-level independent variables

• Probability of a given count, for those in Group 2, assuming NB:

• With δ following the gamma distribution as in earlier NB slides
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• So ZINB 

• Mean and Variance of ZINB

• with 𝛼 being the additional variance component from NB versus 

Poisson
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Interpretations in Zero-Inflated Models

1. Probability of Being in the Structural Zero Group, from 

coefficients in the ”inflation” equation

2. Probability of a Count, given NOT being in the Structural 

Zero Group, with rate predicted from the coefficients in the 

“count” equation

»                              Poisson reported here; adjust      

 accordingly for NB Model
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• Probability of being either an “inflated” or “true count” 0:

which means you can separate the “true count” and “inflated” 0s 

once you’ve estimated the model, and see how X/Z relates to each

• The unconditional rate, given the presence of structural 0s:

• The rate for a case NOT in structural 0 group:
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Comparing Count Models

• 4 different models we’ve considered:  Poisson, Negative Binomial, 

Zero-Inflated Poisson and Zero-Inflated Negative Binomial.  How to 

choose between them all?

• One way is to eyeball the counts that are produced by each model 

and see which one fits the observed data (see below)

• But what about more formal statistical tests?

• If models are nested, then can test via LR test

– Poisson and Negative Binomial are nested; test 𝐻𝑜: 𝛼 = 0 via LR test 

comparing the LL between models with and without the alpha 

parameter

– ZINF Poisson and ZINF Binomial are also nested; test 𝐻𝑜: 𝛼 = 0 via 

similar LR test (need to “force” Stata to do this)

• How to compare other models?
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• Zero-inflated Poisson and Poisson are not formally nested; Zero-

inflated Negative Binomial and Negative Binomial are not formally 

nested

• Several possibilities

• 1) Vuong test of non-nested models

– Logic:  Take ratio of the predicted likelihoods for a unit from M1 and M2;       

if M1 is ”better” this ratio should be greater than 1, beyond sampling error

– Calculate the log-ratio as 𝑚𝑖 = 𝑙𝑛
෣𝑃(1) (𝑦𝑖|𝑥)

෣𝑃(2) (𝑦𝑖|𝑥)
 

– Test 𝐻𝑜: ഥ𝑚 = 0      This would mean that the ratio is 1 in the population, so 

ln(1)=0

– Vuong V=
𝑁 ഥ𝑚

𝑠𝑚
 where 𝑠𝑚is the standard deviation of the mi  

– If V> 1.96 then reject H0 

• 2) Compare AIC and BIC values for the alternative models, following 

the decision rules discussed earlier in the course
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Informal:  Compare the observed and predicted counts
from all models and see which fits best



Calculated as Observed Count Minus Predicted Count for each count

Long-Freese “countfit” routine in SPOST does all of  this, formal and 

informal tests, including graphs
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