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Limited Dependent Variables:  Counts

• So far have talked about models for different kinds of categorical data 

– 2 choice, ordered 3+ choice, non-ordered 3+ choice with individual 

and choice-specific independent variables.

• Next segment of course will be devoted to situations where DV is 

another kind of non-continuous variable, what is called limited, in that 

can only take on some values and not others.  

• One kind of limited DV is very common in social science, and that is a 

variable that represents a count of something, how many times 

something occurred, or how many things a person knows or does, etc.  

Example:  how many acts of political participation a person engages in, 

how many wars a country is involved in, how many terrorist attacks 

experienced, how many presidential vetoes in a legislative session.  

Limited by 0 on the left, and must be integer value on the right.  

• Other limited DVs:  censored, sample-selected which we’ll get to later

PS2730 MLE CatLimModels, Fall 2021                                                                                                                  2



• Count and other limited variables often analyzed using OLS or 

regression models as if the DV was really continuous.  But leads to 

nonsense predictions about negative numbers of wars, negative 

participations, or, in censoring case, erroneous conclusions because the 

clump of values at 60 can lead the regression line to be very far off  its 

true value.  So we move to other methods to handle these situations.

• Begin with count data

• Many count models available, depending on how the data were 

generated, and the distribution of the dependent variable

• Poisson, Negative Binomial, Zero Inflated, Hurdle Models: differ 

primarily due to theoretical considerations about how distribution of 

counts came about, how the 0s versus non-zero values may have been 

generated, and whether the models can empirically accurately account 

for the number of zeros in the data, a common problem in the 

estimation of count models

• All build on Poisson Regression as foundation
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• Example in South African data:  political participation, runs from 0-12

• How many acts of participation engaged in over the past 2 years? Some 

people do nothing (37%), some people a few acts, some people do 10 or 

more (3%)

• Two features of count data:  1) consist solely of non-negative integers; 

and 2) often very skewed in terms of the distribution
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• What happens if we use OLS on this DV?

You can start seeing 

some of  the problems:

Negative predictions,

heteroskedastic and non-

normal error variance; 

possible non-linearity in 

relationships
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• Multivariate example: Polpart as function of education, civic ed 

exposure, political interest, group memberships

• 65 cases with negative participation predictions, average of nearly -.5 

and one -1.98 prediction!

• So 

• OLS PROBLEM #1:  POTENTIAL NEGATIVE PREDICTIONS
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• OLS PROBLEM #2:  SKEWED (NON-NORMAL) RESIDUALS

OLS Residuals when GROUPS=0

OLS Residuals when GROUPS=5
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• OLS PROBLEM #3:  HETEROSKEDASTIC ERROR VARIANCE

Error Variance increases as 
predicted Y increases

All this suggests that count data is 

likely not to follow a normal 

distribution at all, and not one that 

has a constant variance that can be 

modeled with OLS or normal 

regression techniques, plus 

relationship is possibly non-linear 

in the first place
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• What to do? Initial Model:  Assume that data follows a “Poisson 

distribution”

• Poisson:  a theoretical distribution that is often used to model rare 

events, things that happen relatively infrequently.  

• Poisson distribution:

– non-negative, 

– often highly skewed

– generates intrinsic non-linearities between the conditional means and the IVs

– has the characteristic that the mean and variance are the same

• This means that as the mean increases, the variance increases, so it is a 

promising distribution for the kind of heteroskedasticity that is often 

seen in count data.  

• As we will see, sometimes in count distributions the variance is even 

greater than the mean, and large numbers of zeros are also possible 

problems for Poisson.  So other methods developed to compensate 

for these deficiencies
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• When model the conditional mean as a function of Xs, will see how the 

relationship is non-linear, which is also another advantage of Poisson.

• Can look at Poisson regression as modeling a non-linear relationship 

that always predicts positive outcomes while accommodating skewed 

distributions on Y

• Form of the Poisson distribution:  governed by a single term μ, the 

mean of the distribution, which is also equal to its variance

• This gives the probability of observing a 0, 1, 2, 3 ….. etc,  given a 

value of μ, the mean of the distribution or what is termed the “rate” of 

occurrence, or the expected number of times something will happen 

in the given time interval

• So given an “expected” or “average frequency”, with what probability 

do we observe particular frequencies 0, 1, 2, etc.?

Pr( y |m) =
exp-m (m y )

y!
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• Example: μ =.85

• Can plot these values for different μ

Pr( y | .85) =
exp-.85(.85y )

y!

Pr(0 | .85) =
exp-.85(.850 )

0!
= exp-.85 = .43

Pr(1| .85) =
exp-.85(.851)

1!
= exp-.85(.85) = .36

Pr(2 | .85) =
exp-.85(.852 )

2!
=

exp-.85(.852 )

2*1
= .15

Pr(6 | .85) =
exp-.85(.856 )

6!
=

exp-.85(.856 )

6*5*4*3*2*1
= .0002
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Can view the distribution as governed by the latent “rate” parameter μ, 

which generates different probability sets of  0/1/2/3/ etc., depending 

on the value of  the rate or the “average” of  the distribution
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• Demonstrates several features of the Poisson distribution

– No negative values in the Poisson distribution.  Can be 

seen in the denominator of the distribution, as the 

factorial of a negative number is undefined. 

– μ is the mean of the distribution. As the mean increases 

the bulk of the distribution shifts to the right

– The variance equals the mean (also known as 

“equidispersion”):  Var(Y) = E(Y) = μ.  As as μ increases,  

can see that the variance also increases to match it

– As μ increases, the probability of 0s decreases

– As μ increases, the Poisson distribution approximates the 

normal distribution
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• Important assumptions for using Poisson distribution:

1. The observations are independent

– One act of participation doesn’t influence the probability of  

another one; in a given time period one terrorist incident doesn’t 

influence another in a given time period, etc.  This would be 

violated, e.g., if there are contagion effects 

2. There is no over-dispersion (or under-dispersion).

– The variance equals the mean, or, when we expand the model to 

include independent X variables, the conditional variance, given the 

Xs, equals the conditional mean, given the Xs

3. There are no more 0s than would be predicted by the 

Poisson distribution

• If these assumptions are violated, we either modify our 

model or move to alternative models for count data 
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• Begin modeling political participation by seeing how it looks compared 

to a Poisson distributed variable with the same mean.  POLPART has a 

mean of 2.29; what does a Poisson variable with that mean look like in 

terms of the distribution of counts?

Pr(0 | 2.29) =
exp-2.29(2.290 )

0!
= exp-2.29 = .10

Pr(1| 2.29) =
exp-.2.29(2.291)

1!
= exp-2.29(2.29) = .23

Pr(2 | 2.29) =
exp-.2.29(2.292 )

2*1
= .27

Pr(3 | 2.29) =
exp-.2.29(2.293)

3*2*1
= .20

Pr(6 | 2.29) =
exp-.2.29(2.296 )

6*5*4*3*2*1
= .02
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• Differences?

– Poisson predicts far too few 0s than in actual distribution

– Poisson predicts far too many low counts, too few high counts

– This indicates overdispersion in the actual data; we can confirm this by 

looking at the variance of POLPART, which is 7.81 compared to the 

mean of 2.29!

• What accounts for overdispersion?

– One possible reason:  individual heterogeneity

– Until now we are assuming *one* rate parameter which is constant 

across all units.  This is unrealistic! Should not the latent rate of 

participation be different for highly educated, poorly educated, etc.?

– If we ignore this heterogeneity, we’ll typically see such overdispersion 

since more variance in the rate parameter will translate into more 

variance in the observed counts

– If we include additional variables to predict the latent rate, we may 

achieve conditional equidispersion, such that Var(y|x)= μi|x
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• We want the rate to always be positive, so we can predict the rate 

as a very simple exponentiated function of the independent 

variables:

• This is Poisson regression: the X variables predict the latent rate of 

occurrence of some (assumed poisson-distributed) outcome, which 

then generates predictions of different distributions of counts for 

all observations with similar latent rates

• And once we estimate μi conditional on the Xs, we can then assess 

whether the conditional distribution of counts is equidispersed as 

one measure of the fit of the model to the data

Pr( y | X ) =
exp(-m)(m y )

y!
=

exp(-exp(XB))(exp(XB))y

y!

where m = exp(XB)

m = E(y | X ) = exp(XB)
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• This makes for a very straightforward GLM version of the 

Poisson model:

• So a one-unit change in the independent variables generates a 

linear β change in the “log-rate” parameter

• So the Poisson model is “linear in the log-rate” and non-linear 

in the rate

• Remember in GLM: g(μ) is the “linearizing link” of a non-linear 

response function, and the “mean function” g-1 (η) gets you 

back to μ from the linear fuction

m = expXB

and  lnm =h = XB

g(m) = ln(m) =h = XB

g-1(h) = expm = expXB
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ML Estimation of Poisson Regression

• Steps:

• Assume a probability distribution for Y – Poisson in this case

• Express the joint probability of the data (i.e., all of the Y) using the 

assumed probability distribution

• Calculate the joint probability of the data given the parameters–the 

“likelihood function” (taking the log of the likelihood to simplify)

• Maximize this function with respect to the unknown parameters (e.g., 

the Bs in the regression function)  
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• Which is maximized wrt the β

• ML estimates are those that generated the highest predicted 

probability of observing the count for each unit that was 

observed, given the predicted rate and the assumed Poisson 

distribution of the outcomes

Pr( y | X ) =
i=1

N

P
exp(-m

i
)(m

i

y
i )

y
i
!

L(b | y,X ) =
i=1

N

P
exp(-exp(XB)(exp(XB)

y
i )

y
i
!

ln L(b | y,X ) = -nexpXB+
i=1

N

SyiXb -
i=1

N

S ln( y
i
!)
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• The univariate Poisson regression (i.e., no independent variables)

• Estimated constant=.83

• So predicted μ=exp(.83) = 2.29

• Mean of POLPART=2.29!!!

• Every unit as the same predicted rate, which translates into the 

distribution of predicted outcomes seen on the graph on slide 16

• Log-likelihood maximized at -2409.83, with no further iterations since 

the mean of POLPART was just plugged in and maximum was 

achieved
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• One independent variable:  Log-rate=-.23+.358*Groups

• Each additional group increases the predicted log-rate by .358

• Each additional group increases the rate by a constant factor 

exp(.358)=1.43

• Log-likelihood maximized at -2066.93

• Model chi-square= G2 = 2 ln L (Full Model) – 2 LnL(Reduced Model)

• G2 = 2 (-2066.93)-  2 (-2409.83 ) = 685.8 

• Pseudo R-squared=(-2409.83 –(-2066.93))/ (-2409.83 )=.142
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Interpretation:  Impact of X on μ

• Exponentiate the β to get the factor change in the rate for an 

additional unit (or standard unit) change in X

• Increasing groups by 1 leads to a 1.43 factor change in the rate

• Predicted rate for 0 groups: exp(-.23)=.79

• 1 group:  exp(-.23+.358)=1.137 (which is .79*1.43)

• 2 group: 1.63 (which is 1.137*1.43), etc.

• Percent change in the rate is the (factor change*-1)*100

• So every unit change in X changes the predicted rate by 43%!!
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• Increasing by 2 groups leads to a factor change of exp(.358*2)=2.05 etc.

• This suggests a non-linear effect of X on the rate, since a one-unit 

change in X leads to a 1.43 factor change in the rate, while a 2 unit 

change leads to a 2.05 factor change in the rate, etc.

• So Poisson is a non-linear model of the effect of the independent 

variables on the rates or expected counts!!
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• Can also examine the effect of X on μ from discrete or marginal 

change in X

• Marginal effect (slope of tangent to curve for very small change in X):

• Marginal effects depends on both the regression coefficient and the 

predicted rate; when β is positive, the bigger the rate, the larger the 

marginal effect; when β is negative, the smaller

• Can compute with other variables at their observed values (default in 

Stata) or setting them at their mean

Interpretation:  

Impact of Marginal and Discrete Change in X on μ

¶E( y | X )

¶X
k

= E( y | X )b
k
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• Discrete change, for centered/uncentered unit/standard unit:

DE( y | x)

Dx
k
(x
k

start® x
k

end )
= E( y | x,x

k

end )- E(y | x,x
k

start )

Note:  AMEs by default

All variables held at their 

observed sample values; use 

“atmeans” option for alternative 

MEM
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Interpretation:  Impact of X on P(yi)

• Can also see how changing IVs impacts the probability of a 

count being at a certain value or values, and can graph this 

Pr( y = k | X ) ==
exp(-exp(xB̂))(exp(xB̂))k

k!

These are differences in 

count probabilities for 

individuals who were 

exposed to Civic Ed and 

individuals who were not
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LEFT:  Predicted distribution of  

counts, no civic education versus 

civic education

RIGHT:  Predicted probability 

of  POLPART=0 and 

POLPART=3 for different 

levels of  group memberships 

and civic education exposure
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Assessing Model Fit

Fit indices via “fitstat”:

Model chi-square, McFadden 

R-squareds, and Deviance-

based Statistics (AIC and BIC)
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• Finally, can see adequacy of the PRM model as a whole by 

comparing average probability of each count with observed data

• Observed proportion of 0 still much higher than predicted! 

• Still overpredict 1/2/3 and underpredict 8/9/10

• So still have overdispersion:  why?  

• Contagion and/or unobserved heterogeneity!  Move to alternative models
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