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Interpretation of Logit and Probit Coefficients
• Given the non-linearities in the logit and probit models, it is not 

immediately clear how to interpret the regression coefficients and effects 

that are obtained.  What do the β mean exactly, and how are they related 

to changes in P(Y=1) for different ranges and changes in X? This leads 

to the more general question of how best to interpret the effect of the X 

in these models

• General approaches

1. Direct interpretation of the effect of β on the linear predictor η from 

GLM or on a transformed η (such as the “odds” in logit)

2. Calculation of marginal effects or changes in P(Y=1) for different 

kinds of changes in X

a. Average effect on P(Y=1) for “marginal change” in continuous X 

variables 

b. Average effect on P(Y=1) for “discrete changes” in all X variables

3. Interpretation of the β on changes in Y* in latent variable framework
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1. Direct interpretation of the β

• In logit/probit, as in any of the GLM models we’ll consider, one can 

always interpret the β as the effect of a unit-change in X on the linear 

predictor η, whatever that is for the given model.

– For logit, it is the “log-odds” that Y=1

– For probit, it is the “inverse cumulative normal” or the z-score 

corresponding to the proportion of the cumulative normal curve cut off 

by P(Y=1)

• The size, sign, and significance of β tell you something generally about 

the nature and magnitude of the effects

– Bigger (smaller) means steeper (more gradual) changes in η for a unit 

change in X; positive/negative/significant/not significant:  all self-

explanatory.

– These changes map onto P(Y=1) in a non-linear fashion, but they map 

nonetheless
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• But: the exact numerical value of β is arbitrary; we chose (for 

identification purposes) the normal distribution with s.d. of 1 for probit 

or the logistic distribution with variance ( 𝛑2/3) for logit (with “𝛑” here 

being the irrational number 3.141……., not P(Y=1)!) 

• Given the similarities of the normal and logistic distributions, can 

convert probit to approximate logit coefficients by multiplying probit 

by 𝛑/√3, or approximately 1.81.

• But this also means that the β itself doesn’t tell you much in and of 

itself; unlike linear regression, e.g., it doesn’t tell you the average change 

in actual Y for a unit change in X (or even the average change in 

P(Y=1)

• Moreover, nobody intuitively understands what an effect on a log-odds 

(or a z-score) means anyway!  So we generally want to use other ways to 

understand effects in these models
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Odds Interpretations (in Logit)
• In logit models, there is a nice alternative interpretation of β:  since β 

represents the change in the “log-odds” that P(Y=1) for every unit 

change in X, then exp(β) represents the factor change in the odds 

that Y=1 for every unit change in X. Odds=(P(Y=1)/(1-P(Y=1))

• Exponentiating β gives you this information (“listcoef” in Stata)

• In our example, every unit increase in group memberships changes the 

odds that a person participates, i.e, (Y=1), by a factor of 1.723 (exp.54)

• There is a constant factor or multiplicative change in the odds for every 

unit change in X.  Going from 0-1 on X changes the odds by a factor 

of 1.723, going from 3-4 on X changes the odds by same factor, etc.

• So in logit:  X has linear effect on the log-odds that Y=1, and X 

has constant factor effect on the odds that Y=1

• Can also say that a unit change in X increases the odds by 72.3%

• Can also calculate factor changes in odds by changing X by 1 SD and 

comparing across variables (see do file for today’s session)
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Our logistic regression of  locdich against groups in the South African data (slide 15, week 1)

For 0 groups, P(Y=1)=.276, odds=.381

For 1 groups, P(Y=1)=.397 odds=.658

Do you see the 1.723 multiplicative 

change in the odds for every unit change 

in X?

.38*1.723=.657   (from 0-1)

.657*1.723=1.132 (from 1-2)

3.360*1.723=5.789 (from 4-5)
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Logit with “or” option (or “logistic” instead of  “logit”) gives entire model in terms of  

odds-ratios instead of  log-odds, and you get correct confidence intervals for the factor 

change in the odds for a unit change in X (by exponentiating the lower and upper 

bounds of  the 95% confidence interval for the logit coefficient)



• And easy extension to multiple logistic regression:  exp(logit) is the 

factor change in the odds that Y=1 for a unit change in X, holding all 

other variables constant.  So it is a constant factor change regardless of 

the levels of other variables (which is also a nice feature of logit)

PS2730 MLE-CatLimModels, Week 3

Note:  Factor changes on the odds that are less than 1 can still be *very* powerful effects.  

“Nointerest” has a logit effect of  -.63, and a factor change in the odds effect of  .534.  

(I created “nointerest” by generating a new variable as (5-interest)).

This is the same as a 1/.534, or a 1.87 decrease in the odds of  participating, for every increase 

of  1 unit on “nointerest”.  It is a larger absolute change on the odds than a unit change in any 

other variable!



2. Marginal effects on changes in P(Y=1)

• Alternative to direct interpretation of β is to examine the effects of 

changes in X on changes in the P(Y=1), holding other variables 

constant.  In linear regression, this effect is simply β, since the partial 

derivative of the regression line wrt X is β. In non-linear models, these 

quantities change as X and other independent variables change.

• Several implications: we can first choose (for continuous variables), 

whether to calculate the effects of marginal change or discrete changes in X 

on P(Y=1) (see next slide)

• And since the effect of changes in X on P(Y=1) will depend on the 

values of all the other variables, we need to take this into account to see 

how changes in the variable(s) of interest affect P(Y=1).

• Finally, it means, for discrete change analysis, we can pick specific 

interesting/meaningful quantities of change in X to display the effects 

on the P(Y=1), for example changing X from minimum to maximum 

values, unit increases, etc. 
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Marginal Change Versus Discrete Change
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• A “marginal effect” or “marginal change” is the effect of an infinitesimally 

small change in X on P(Y=1).  It is calculated as the slope of the tangent 

to the probability curve for P(Y=1), or the first (partial) derivative at a 

given value of X, or ∂ P(Y=1)/ ∂Xk where “k” is the specific value of X

• A “discrete change” is the change in the P(Y=1) for a given amount of 

change in X.  It is calculated as 

     P(Y=1|X, Xk =end)- P(Y=1|X, Xk= start), or ∆P(Y=1|X)/ ∆X

• You can see that both changes will vary, depending on where on the 

probability curve X is (which depends on all other variables *and* X)

     This can be seen formally for marginal change by taking the partial

      derivative for a logit curve as:

     which means that the marginal effect is greatest when closest to P=.5

• It also means that dividing the logit coefficient by 4 gives you the 

“maximum marginal effect” (since the expression is maximized at .5*.5)
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• Where shall you set the values of the other independent variables 

in calculating marginal or discrete changes?

• Marginal Effect at the Mean (MEM):  set all other variables 

equal to their sample means, and calculate either marginal or discrete 

changes.  This used to be the standard method.

– Advantage:  it provides the baseline probability for an “otherwise average” 

unit (and it is easy to calculate); Disadvantage:  no unit might be at or near 

the mean on all the other independent variables, so it may not correspond 

to a “typical” case

• Average Marginal Effect (AME): for marginal change, allow all 

other variables to remain at their observed sample values, calculate 

the marginal change for a unit based on its value of X, and average 

this quantity across all units.  For discrete change, calculate P(Y=1) 

for a given change in X, allowing all other variables to remain at their 

observed sample values.  This is now Stata’s default! See Hanmer and 

Kalkan (2013) for a recent treatment.
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• Marginal changes and discrete changes can be very different, 

depending on the non-linearities of the probability curve for the 

points on X that you are concerned with

• Differences in displaying “marginal” versus “discrete” changes 

depend mainly on personal or disciplinary preference (sociology likes 

discrete change (following Long), economics likes marginal change)

• Marginal changes can be calculated for dummy/categorical 

independent variables, but not really meaningful to talk of 

“instantaneous” change in a dummy variable.  There is a more 

complicated interpretation but often advised just to use discrete 

change.

• Both kinds of marginal effects are estimated quantities, so it is useful 

to compute standard errors and confidence intervals for both

• All of this can now be done via the MARGINS and SPOST 

commands in Stata
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• Marginal Effect at Representative Values (MER): Pick substantively 

interesting values of other Xs and calculate the associated marginal or 

discrete changes in P(Y=1).  Used anecdotally more than systematically.  

Some values typically chosen:  minimum/maximum (range), quartiles, or 

sometimes other theoretically compelling values of covariates

• Following the earlier discussion of marginal effects, one combination of 

all other independent variables can be especially interesting:  when, taken 

together, they put the unit at the point on the probability curve 

corresponding to .5 (i.e., a priori logits or z-scores of 0).  This is the place 

where a unit (or standard unit) change in X has its maximum impact!

• Which is best, MEM, AME, or MER? Discipline is converging on 

AME since it is the average marginal effect for the given sample, and 

MEM may not be “representative”. They differ depending on how big 

P(Y=1) is when all variables are at their means; high/low values mean 

AME is larger; medium values means MEM is larger.  See excellent 

discussion in Long and Freese pp. 244-246.
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• Last issue:  what changes in X are most informative to use when 

calculating discrete change in P(Y=1)?

• Many choices:

– Show P(Y=1) associated with minimum, mean, and maximum 

values of X

– Set X at its mean value, and show the effect of a unit change 

in X at that point.  This is the effect of a unit change in X for 

an otherwise “average” person on X.

– (Centered) change in X of 1 unit at the mean of X = 

– Set X at its mean value, and show the effect of a standard 

deviation change in X at that point.  This is the effect of one 

standard deviation change in X for an otherwise “average” 

person on X.  Or centered change in X of 1 standard unit at
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X ± .5

X ± .5s



Multivariate Logit Example

• So:  unit change in groups leads to a constant .425 change in the logit of Y

• Unit change in education leads to a constant .272 change in the logit of Y

• Voters from 1995 have logits that are .395 higher than non-voters

• So calculating the effect of each variable on the probability that Y=1 means different 

effects for different kinds of people, depending on where they are on the cdf from all 

other variables, which determines their “otherwise existing probabilities”
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• Effect of going from 0 to 4 groups for voters, for otherwise “average” person
– Logit= -.456 + -.627*1.92+.3954+.2721*2.880=-.481     P(Y=1)=.382

– Logit= -.456 + .426*4+ -.627*1.92+.3954+.2721*2.880=1.22 P(Y=1)=.772

• Effect of going from 0 to 4 groups for non-voters, for otherwise “average” 

person
– Logit= -.456 + -.627*1.92+.2721*2.880 =-.876                  P(Y=1)=.294

– Logit= -.456 +.426*4+ -.627*1.92+.2721*2.880 =.828      P(Y=1)=.696

• Effect for Voters:  .772-.382=.310    Effect for Non-Voters:  .696-.294=.402

• Effect of one group membership for a person with prior probability of .5 

=.105 (i.e. p goes from .5 to .605)

• You can do these kinds of calculations for any combination of independent 

variables, what Long and Freese call ”Marginal Effects at Representative 

Values” or MER.
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• This is the output from “mchange”; it provides all the marginal and 

discrete changes, holding all other variables at their observed sample 

values on left, at their mean values on right.  They are similar but 

*not* identical



3. Interpretation of β on Y* in Latent Variable Framework

• As noted, probit coefficients can be interpreted similarly to logits in 

terms of the constant change on some quantity related to P(Y=1).  

In logit, it is the “log-odds”.  In probit, it is the “z-score” that 

corresponds to a point on the cumulative normal distribution 

associated with the probability that Y=1

• Everything from previous slides holds for calculating effects in 

bivariate and multivariate models except for the odds constant factor 

change interpretation in logit, which is not applicable in probit

• You will get (almost) exactly the same P(Y=1) for a person with a 

given set of values on the IVs in logit or probit.                              

And logit β ≅ probit β * 𝛑/√3, or probit*1.81

• So the choice of logit or probit in this respect is pretty much a 

matter of personal preference
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• E.g. effect of  going from 0 groups to 4 groups for voters in 1995, otherwise average

0: z= -.276+-.379*1.92+.243+.165* 2.880 = -.285             PHI(-.285)=.388 

4: z= -.276+4*.256+-.379*1.92+.243+.165* 2.880 = .739  PHI(.739)= .770



• But given the derivation of probit in terms of the latent variable 

approach, we can also interpret probit coefficients another way:  as the 

effect of a unit change in X on Y*, the latent “propensity” of the latent 

“utility” for the behavior or the choice that is being modeled.  This is a 

nice linear effect (see the graph in week 1, slide 20)!

• So every additional group to which an individual belongs changes Y* 

(the propensity to participate in local politics) by .257 units.

• But there is a big problem in interpreting this value:  the variance of Y* 

is not fixed, it is determined by the model (given that it is unobserved 

and we had to fix the variance of ε to identify the model in the first 

place).  This is fundamentally different from linear regression, where the 

variance of Y was observed and is independent from the Xs in a 

regression model.

• In non-linear latent variable models, the variance of Y* and the β are not 

separately identifiable!  And adding Xs makes bigger variance in Y*, so 

the β mean different things depending on which Xs are included
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• This shows that adding more Xs changes the variance of Y*, since the 

variance of epsilon is fixed at 1 by assumption

• Long suggests standardizing Y* and fixing it onto a SD of 1 scale. Then 

you can interpret the effects of a given unit change in X, or a given 

standard deviation change in X, on a standard deviation change in Y. 

Then you will have exactly the same kind of standardized beta 

coefficients you have in regular regression!
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Y*= XB+ e

Var(Y*) = b 2Var(X )+Var(e )

Var(Y*) = b 2Var(X )+1



• In Stata SPOST:  “listcoef” after probit gives you effects of X, and 

standardized X on standardized Y*

– bStdY:  effect of a unit change in X on standardized Y*

– bStdXY:  effect of an SD change in X on standardized Y*

– bStdX:  effect of an SD change in X on Y*
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• There are deeper consequences of the indeterminacy of the variance of 

Y* -- it means that group comparisons (say, between treatment and 

control) may be confounded by those groups having intrinsically 

different variances, and hence the coefficients may differ for non-causal 

reasons

• See Breen et al (2018) for further discussion; they recommend relying on 

Y-standardized comparisons and discrete/marginal changes in P(Y=1)

• It also makes it difficult to interpret interaction effects in latent variable 

models, whereby the effect of X differs for different groups represented 

by categories of Z. If the categories of Z have different intrinsic 

variances, then the interaction effects may also differ for non-causal 

reasons

• See Breen et al .(2018) for further discussion, and Rainey (2016) for 

other issues in the estimation of interaction effects in probit/logit
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• A final consequence of the indeterminacy of the variance of Y*:  it 

becomes very difficult to compare β for the same variable in two 

different models using the same data set.  But: this is a very 

important part of the research process!  We often want to include 

additional variables in a multiple regression format to see how the 

effect of a given variable changes when we “control” for other 

variables that may confound the process.

• In the latent variable framework, adding new variables can change 

the β simply because the scale (variance) of Y* changes, not because 

we’ve controlled for confounders and have better isolated the 

“causal” effect.

• What to do?  Can we separate changes in β that are due to scale 

changes from changes in β that are due to confounding?

PS2730 MLE-CatLimModels, Week 3



• Karlson, Holm and Breen (2011; described in Breen et al. (2018)) 

suggest an ingenious method, implemented as KHB in Stata    

(“net search KHB” and install)

– Assume you want to estimate the effect of X on Y, controlling for Z

– Comparing the bivariate to the multivariate effect is not possible as it 

is in a linear regression, due to the scaling issue we are discussing

– So KHB method:  regress Z against X, then take the residuals of this 

regression as the proxy for Z -- by construction it is uncorrelated 

with X but it has the same scale as Z!!!

– Compare the probit coefficient for X in a “reduced model” with X 

and the Z-residuals included and a “full model” with X and Z 

included.  The reduction in the size of β *must* be due to 

confounding, not changes in the variance of Y*, since the “reduced 

model” already took the scale changes into account

• See the KBH example section in the do file
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Rare Events and “Separation” Problems in

ML Estimation of Logit/Probit Models

PS2730 MLE-CatLimModels, Week 3

• ML estimation of logit and probit models is problematic when events 

are “rare”, i.e., when either the “0” or “1” outcome is infrequent

• The problem is exacerbated in small samples, so if you have a sample 

size of 1000 with only 20 “1”s, there will likely be problems.  But the 

same percentage of 1s (2%) in a sample of 100,000 gives 200 1s and 

there likely won’t be a problem

• And even if you have a sample of 100,000, having only 20 1s will 

likely produce problems. 

• So the issue is more the frequency of the “rare” event, but in small N 

studies the problem will likely intensify



• In extreme cases, you have what is termed “separation” in the 

data.  That means you could generate a function which would 

“separate” the 1s and 0s perfectly under some conditions

• For example, if all college graduates voted then when X 

(education)>high school, Y (voted)=1.  There would be 0 

respondents in the cell “college graduate non-voter”

• In this case ML estimates of the effect of “college” would fail; the 

estimate of β for “college” could be infinitely large and still not 

converge to the P(Y=1) of 1 (due to the bounds on p)

• Stata would terminate the iterations and drop the college 

graduates from the estimation process.  Not ideal!

• This example would be an instance of “quasi-complete 

separation” since knowing one category of X predicts Y 

perfectly; if all categories of X predict Y perfectly there is 

“complete separation”
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• Another way to look at it:  in a two-by-two table (say, college/no 

college versus vote/no vote), you can arrive at the ML estimate in a 

grouped data analysis as:

• β =ln(f11*f22/f21*f12), or what is termed the “cross-product ratio”
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No College     College                      

Didn’t Vote

Voted 

f11 f12

f21 f22

β = ln((544*64)/(299*33)) = 1.261

Log-odds of  voting, no college:  ln(299/544)=-.598

Log-odds of  voting, college:  ln(64/33)=.662

Difference in log-odds = 1.259 = β



• What happens under “separation”?  Let’s say there were no college non-

voters

• ML estimate would then have a 0 in the denominator!!! Stata drops the cases
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General rule:  

Whenever there 

is a zero in a 2x2 

table there is no 

ML estimate!!



Separation and ML Estimation
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If  Stata didn’t drop the cases, it 

would have generated a likelihood 

function looking like this – the beta 

for the variable goes higher and 

higher and never converges to a 

“maximum”

General problem: ML estimates are systematically biased away 

from 0 as N and the number of  events (1s) get smaller and 

smaller.  This leads to the overestimation of  β!



Solutions
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• Several solutions in the literature:  

– exact logistic regression (for very small samples; computationally 

intensive),

– King and Zeng’s (2001) “rare events logit” (Stata: relogit) 

• According to the most recent literature , the preferred correction 

is the “Firth logit” method which relies on “penalized maximum 

likelihood estimation” (PMLE)

• Stata:  firthlogit (“net search firthlogit” and install)



Firth Logit and PMLE
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• Instead of maximizing

• We penalize the likelihood function by a term that is inversely 

related to the degree of sparseness in the data, or the 

“information” that is contained in the inverse of the matrix of 

second derivatives (i.e., flat functions lead to a larger penalty since 

there is less information in the data)



• We maximize this penalized function, with the ½ log|i(β)| term 

being the penalty related to the determinant of the “information” 

matrix (the inverse of the matrix of second derivatives) 
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Here is a “penalized” likelihood function – it 

does have a maximum!

It is sometimes argued that one should 

always use PMLE – no harm done if  there 

are no sparseness problems
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