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How Do We Estimate Logit/Probit Model Parameters?

• OLS cannot be used to estimate parameters in binary DV (and 

other non-continuous DV) models

• Why?

1:  If think of the dependent variable as Y*, it is unobserved

2. If think of the dependent variable as P(Y=1), it is also 

unobserved, and using 0,1 in place as in logit model gives 

ln(1/0) or ln(0/1), each of which is undefined

• So we turn to another estimation procedure: 

Maximum Likelihood

• ML can also be used for continuous DV regression and many 

other models.  And we will see below that if the OLS assumptions 

are satisfied, OLS=ML in the continuous DV case
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Intuition of ML Estimation

• Find the β parameters (or other parameters you might be interested 

in) that give the highest likelihood of observing the data that were 

observed. Given a sample of observations, we search for the 

population parameters that maximize the joint probability of having observed 

that sample

• For logit/probit, that means finding β that maximize the P(Y=1|X) 

when there actually was an observed “1”, and maximizing the 

P(Y=0|X) when there was actually an observed  “0” 

• In probit, for example, since P(Y=1|X)=Ф(XB), then we should 

attempt to find B that generate z-scores (XB) corresponding to high 

P(Y=1) for all of the 1s, and gives z-scores corresponding to low P 

(Y=1) for all of the 0s.  

• The parameter estimates that give the highest joint set of Ps 

according to this criteria are the ML estimates
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• ML estimation is not limited to estimating logit or probit 

parameters:  it is a general principle extending to estimating any 

population parameter from (randomly selected) sample data. 

• General steps in ML estimation:

1. Assume a probability distribution for Y – e.g., normal, binomial 

(Bernoulli), poisson, etc.)

2. Express the joint probability of the data (i.e., all of the Y) using the 

assumed probability distribution

3. Calculate the joint probability of the data given the parameters–the 

“likelihood function” (taking the log of the likelihood to simplify)

4. Maximize this function with respect to the unknown parameters 

(e.g., the Bs in a regression/logit/probit function)  

• This yields the parameter estimates that produced the 

observed data with the highest overall likelihood
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Likelihood Inference
• Assume we have a fair coin (𝝅=.5).  We can then calculate the 

probability of getting 0 heads, 1 heads, 2 heads when we flip the coin 2 

times (.25, .5, .25)

• Assume a population mean of 10.  We can then calculate via the central 

limit theorem the probability of obtaining samples of given size N with 

means of 6, 7, 13, 20, etc.

• These examples assume a known population parameter, and we can 

then calculate the exact probability of obtaining samples with 

different characteristics

• But what we often (mostly) want to do is estimate model parameters 

(call the set of them 𝜽), given the sample data that we’ve obtained

• Instead of obtaining the P(Data|Model) – or the probability of 

obtaining different samples with a known population parameter, what 

we are after is the P(Model(𝜽 )|Data) – that is, the sample data are 

fixed and known, but the model parameters are random and unknown
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• It can be shown (following Bayes’ Rule), that the quantity we are after 

– p(Model(𝜽 )|Data) – is proportional to p(Data|Model (𝜽)).

• We can’t obtain the exact probability of a set of model 𝜽 parameters 

being “true”, but we can talk about the relative likelihood that one set 

of model parameters to another set of parameters

• More formally:  ℒ(𝜽|y) ∝ p(y|𝜽)       (where ∝=“is proportional to”)

• The likelihood of the parameters, given the data, is proportional 

to the probability of the data, given the parameters

• So the parameters that maximize the joint probability of the data are 

the same ones that have the highest likelihood, given the data!
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• Example:  What is the Maximum Likelihood estimate of the population 

mean (μ) of a normally-distributed population, given the following 

sample of data values:  2, 4, 6, 8?

• Steps

1. Assume a probability distribution for Y:  here we assume the y are 

distributed normally with mean μ and standard deviation 𝜎

2. Express the joint probability of the data (i.e., all of the Y) using the 

assumed probability distribution
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• Assuming independent and identically distributed observations

• So joint overall probability is the product of  the individual 

probabilities, denoted by the height of  the normal curve for each yi 

• We see that the joint probability is the product of  the heights of  the 

normal pdf  associated with the individual z-scores

• We can simplify further by assuming a σ of  1 without affecting the 

relative calculations of  each p



PS2730-2021 MLE-CatLimModels Week 2

3. Calculate the joint probability of  the data given the parameters–the 

“likelihood function”:

This yields an *extremely* small value, so it is easier to work with 

log of  the likelihood – this maintains the relative likelihoods 

but makes the numbers more tractable

4. Last step:  Maximize this function wrt the unknown 

parameters.  That will give the “maximum likelihood estimates”! 
  



• There is a joint probability of having observed our data for all 

(infinite) hypothetical values of μ; these are equivalent 

(proportionately) to the likelihood of μ, given the data

• E.g., if μ is 4, we can calculate the probability of observing a 2, a 4 a 6 

and an 8; the product of these probabilities (or the addition of the 

log-probabilities) gives us the value of the likelihood function for 

μ=4.

•  If μ is 6, there is another specific probability of observing a 2, a 4, a 

6 and an 8; adding the log-probabilities gives us the value of the 

likelihood function for μ=6; if μ is -7, there is another value of the 

likelihood function, etc.  

• So, for a given μ, we calculate (P(yi)) for each i and take the product 

over the 4 cases in the sample, or ln(P(yi)) and add them together

• We then take the value of μ that gives the highest joint probability of 

observing a sample of {2, 4, 6, 8} from the (standard) normal 

distribution; this is the maximum likelihood estimate of μ
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Now we can plot the likelihood function against different possible values 

of μ:

Stata gives you the pdf with “normalden(z-score)”
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    μ =1 pdf   μ =4 pdf  μ =5 pdf  μ =6 pdf 

    Z      Z  Z  Z 

Case 1:  2    1 .24       2 .05 3 .004 4 .00001 

Case 2:  4  3 .004      0 .40 1 .24 2 .05 

Case 3:  6  5 .000001     2 .05 1 .24 0 .40 

Case 4:  8  7 .0000009   4 .00001 3 .004 2 .05 

   

Sum of lns of each p   -48.5  -18.4  -11.6  -18.4 
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-48.4

-11.6

Can see that the μ that generated the highest joint likelihood for this 

sample is 5.  This corresponds to the sample mean!  So, given Y and 

a normally distributed population, the ML estimate of  μ is 𝑋



• How do you decide if there is a “maximum” without doing this kind 

of search for the millions of possible parameters?

• Take first derivative of the likelihood function and set it equal to 0 – 

that gives you the place where the slope of the tangent to the curve is 

0, which is the maximum point on the curve
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For our purposes, we can 

ignore everything in this 

expression that does not 

depend on yi



ML Estimation of Linear Regression Parameters

• Next step:  Don’t assume a uniform or constant mean, but rather a 

mean that is conditioned on the Xs through a regression line Y=XB in 

linear fashion, as in E(Y|X) = μ =XB

• Steps:

PS2730-2021 MLE-CatLimModels Week 2

1. Assume a probability distribution for Y – e.g., normal in this case

2. Express the joint probability of  the data (i.e., all of  the Y) using 

the assumed probability distribution

3. Calculate the joint probability of  the data given the parameters–

the “likelihood function” (taking the log of  the likelihood to 

simplify)

4. Maximize this function with respect to the unknown parameters 

(e.g., the Bs in a regression function)  
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What does this mean?

• Maximizing the (log)-likelihood is the same thing as minimizing 

the sum of  squared errors in a linear regression equation!!

• So MLE = Least squares, assuming normally distributed Y (or ε)!

• Taking the first derivative wrt 𝛼 and β and setting to 0 leads 

exactly to the two “normal equations” from OLS derivation and 

the same solutions 



• More informally:  the z score for each yi gives the height of the normal 

pdf for that observation; z scores closer to 0 (less error) give larger pdfs;

• Data points that are far from (near) the hypothetical regression line get a 

very small (large) pdf corresponding to a very small (large) likelihood in a 

normal distribution 

• The regression line (𝛼 and β) that is “closest” to all the points –which 

generates the overall smallest z-scores and largest summed log-

probabilities -- will then be the maximum likelihood estimates of the 

intercept and slope parameters in the regression model.
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MLE bivariate 

linear regression

OLS bivariate 

linear regression



Properties of Maximum Likelihood Estimates

• Consistency—They are asymptotically consistent. As sample size 

increases, the estimates increasingly approach the actual population 

parameters. As a result, MLEs are good large sample estimators (N 

greater than 100, depending on number of parameters)

• Asymptotic normalcy—The MLE parameters are distributed 

according to the standard multivariate normal no mater what 

distribution assumptions you make in your model. This allows us to 

describe them using z-scores, construct confidence intervals, etc.

• Asymptotic efficiency— MLE has the smallest asymptotic 

variance of any estimators that are also consistent and 

asymptotically normal.
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ML Estimation of Logit/Probit Parameters

• Principle:  Given the probability distribution of Yi and the function 

for P (Y=1) in either the logit or the probit model, find the Bs that 

maximize the overall probability of having observed the sample of 

1s and 0s that were observed, given the values of the Xi.

• Steps:

1. Assume a probability distribution for Y – e.g., binomial 

(Bernoulli) in this case

2. Express the joint probability of the data (i.e., all of the Y) 

using the assumed probability distribution

3. Calculate the joint probability of the data given the 

parameters–the “likelihood function” (taking the log of the 

likelihood to simplify)

4. Maximize this function with respect to the unknown 

parameters (e.g., the Bs in the logit or probit function)  
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Step 1: Assume Yi is a binomial (Bernoulli) distributed variable of 1s and 

0s, with 

and with 

Step 2: Express the joint probability of the data
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Step 3: Calculate (and simplify) the log-likelihood function
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• Step 4:  Maximize with respect to unknown parameters

Practically:  add the logs of the predicted P(Y=1) for the 1s to the logs 

of the predicted (1-P(Y=1)) for the 0s.  That is the sum of the log-

likelihoods, and find the maximum value of the B which does this

Formally:  set the derivative of the log-likelihood function to 0, and 

solve algebraically (if possible), or numerically (iteratively) if not

There is no closed-form algebraic solution, but the function is still 

“well-behaved” with a single peak, so can be estimated iteratively
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• Earlier examples were cases where there was an analytic or clean 

algebraic solution, i.e., where setting the first derivative of the log-

likelihood function yielded a nice arithmetic result

• Many instances the likelihood function is sufficiently complex that a 

clean result does not obtain; in those cases maximization is obtained 

through numerical methods

• Search and test many possible solutions iteratively

• Iterative search

 1. Start with an initial guess

 2. Use the current guess to seek a new best guess

 3. Repeat step 2 until “convergence": e.g., the local derivative of 

ℒ(𝜽|Y) is approximately 0

• Many search algorithms are available; default is “Newton-Raphson” – 

in Stata:  options “technique (nr)” or others
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Analytic versus Numerical ML Estimation



Example of Numerical MLE Optimization
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Climbing a log-likelihood hill!

Start the search with an initial “guess”; calculate first derivative of  the 

curve at the starting value -- if  positive we know we need to go to the 

right on the next guess; if  negative we need to go the left



PS2730-2021 MLE-CatLimModels Week 2

Each guess gets you closer to the top of  the hill; if  you 

“overstep and go too far (with a negative first derivative), you 

go backwards
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Until, with successive zooming in and iterations, you reach the top where the 

first derivative equals, or is as close as possible to zero.

In some instances there will be local maxima that are not the true maximum, 

e.g. in multi-peaked log-likelihood functions.  Be aware at least of  this in more 

complex models



Probit Example (PS2730.maxlike.probit.xy.dta)

• We have 9 cases in a sample,  5 “1” and 4 “0”.
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Begin by assuming no slope effect whatsoever of  X (so β1=0).  We 

get the default likelihood function w/out X and then can see whether 

knowledge of  X improves things
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We have a predicted P(Y=1) for all cases equal to 5/9, or .555515.

The z-score associated with P(Y=1) of  .555515 is .1397

Stata: dis invnorm (5/9)

So in the “default”, or “reduced model without X”, everyone has a z-score 

of  .1397, a P(Y=1) of  .555515, and we take the sum of  the log-likelihoods 

as ln(.55515) for all the 1s, and ln(1-.555515) for the 0s

This yields a sum of  the log-likelihoods of  -6.1826

That is the value of  the likelihood function when β1=0
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• Then can try different values of βs, given the X, generate new z-

scores, new sums of the log-likelihoods, and maximize

• See “ps2730-2021.maximum likelihood.probit.do”

• ML estimate for the slope looks to be just about 3.5

PS2730-2021 MLE-CatLimModels Week 2



Iterations stopped at sum of the log-likelihoods =-3.39139 

ML slope=3.483
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MLE:  Statistical Tests

• Is entire equation “significant”? We can arrive at the probit/logit 

equivalent of the least squares F test by comparing the log-likelihoods 

of the “full” (or “unconstrained”) model” that includes X to a 

“reduced” (or “constrained” model that does not include X

• Each of the models has an associated log-likelihood

– -3.3914 for the full; -6.1826   for the reduced

• Does inclusion of X significantly improve the log-likelihood?  Calculate 

the “LR Test”, also called Likelihood Ratio Statistic, or  G2 in 

Long, or “Model Chi-square” in Stata, since it follows a χ2 

distribution

• LR Statistic G2 = 2 lnL (Full Model) – 2 LnL(Reduced Model)

• Here LR Statistic=5.59, with 1 df (associated with 1 indep. variable)
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• The test is based on the likelihood ratio principle, which expresses 

how many times more likely the data are under one model than the 

other (and, mathematically, the ratio of two logs is their difference)

• This likelihood ratio can then be used to compute a p-value, or 

compared to a critical value to decide whether to reject the null model 

in favor of the alternative model.

• Null hypothesis:  All additional slopes=0; or, the full model does not 

significantly improve the log-likelihood over the reduced model

• Interpretation:  The probability of getting a chi-square of the given 

magnitude, IF null hypothesis were true is .018, so we reject the null. 

Relaxing the constraint that β1=0 improves the fit of the model

PS2730-2021 MLE-CatLimModels Week 2



• Can also see this logic in terms of the “deviance” of the models from a 

perfect or “saturated” model where the predicted P for all 1s would be 1, 

and the predicted P for all 0s would be 0.  [It is saturated because, in 

effect, we would have a dummy variable for each case to generate 

perfect predictions].  

• This would generate a sum of the log-likelihoods of 0!!!! 

(ln(1)=0+ln(1)+ln(1)=0, etc.)

• A “Deviance” is calculated as -2* Model Log-Likelihood

• Smaller numbers for the Deviance are better (i.e., closer to the 

saturated (perfect) model’s value of 0)

• 2*lnL(SATURATED) -(2*lnL “Our” Model) = 

     2*ln(1)-2LnL (our Model) = 0-(2*-3.39)=6.78

• So our full model has a deviance of 6.78
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• G^2, or the Likelihood Ratio chi-square, is the statistical test of 

whether a Full model represents an improvement in fit, is based on 

the difference of two Deviances, or the difference of the Intercept-

only model Deviance and the Full model Deviance

• Deviance (Full Model) = -2*-3.39 = 6.78

• Deviance (Reduced Model) = -2*-6.18= 12.39

• So the difference of the two deviances, or LR G^2 , is 5.58

• We can apply this logic to any combination of additional 

independent variables from a (nested) “reduced” to a “full” model

• Stata:  save estimates of M1 and M2 with “est store”, and then 

“lrtest M2 M1” with the unconstrained (full) model as M2, then 

the constrained (reduced) M1

• Or use the Long-Freese SPOST routine “fitstat”

PS2730-2021 MLE-CatLimModels Week 2



• The z test is used for the significance of individual coefficients

 where σ β1 is the inverse of the negative of the second derivative of the  

likelihood function with respect to β1. 

• What is the “second derivative”? – It is the rate of change of the rate 

of change (similar to ideas of “velocity” and “acceleration”).  This 

quantity must be negative in order for it to be maximum likelihood 

estimation.  (WHY?)  It means that slope of the first derivative or the 

tangent of the likelihood function is getting smaller and smaller and 

will eventually level off (at the maximum) and then turn down

• The matrix of second derivatives for all β is called the “Hessian” 

matrix
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• The lnL can be really flat (small Hessian) or really sharp (large 

Hessian).  Which is better in terms of precision of estimates?  If 

flat, not sure that curve at any given point  is really the maximum 

or near the maximum since changing so slowly, so less precision 

• Therefore:  taking the inverse of the Hessian (what is called the 

“Information Matrix”) gives the magnitude of precision and 

hence the standard errors for individual coefficients 

• We take the negative of the inverse Hessian to ensure that the 

standard errors are positive

• Then use these standard errors in normal hypothesis testing

• These quantities, as would be expected, depend on the intrinsic 

nature of the likelihood function, given the data, as well as N, the 

number of cases in the sample.  As N increases, the curvature of 

the likelihood function steepens as well
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Can see how the curvature (2nd derivative) of  our example on top log-

likelihood is really flat when N=9; much more pronounced curvature when 

N=90.  (Note that the ML estimate itself  is the same in both cases). This 

means we are less certain about the maximum likelihood estimate in the N=9 

than N=90 condition, and this uncertainty is reflected in the respective 

standard errors (2.03 versus .64).  You can test this by running the same probit 

regression using “PS2730.maxlike.probit.n90.xy.dta”.



• Wald test provides a more general test of whether coefficient(s) in an 

estimated model are statistically different from those in a 

“constrained” model

• This differs conceptually from the LR test which tests whether the 

additional parameters in a full model improve the log-likelihood 

(reduce the deviance) compared to the reduced model

• But you should arrive at the same conclusions either way 

(asymptotically)!

• Look at top graph of the log-likelihood and examine the difference 

between the estimate of 3.48 and 0, given the curvature of the 

function.  Are we sure that 3.48 is greater than 0?  

• Do the same for the bottom graph.  Much more confidence!

• Calculation (for comparison to constrained model with β=0: 
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Goodness of Fit Statistics
• What are some R-Squared analogues in ML models?

• Several measures exist based on comparisons of likelihood ratios of 

the “constrained” (reduced) and “unconstrained” (full) models.  Basic 

idea:  How much did we improve the LnLikelihood, compared to how 

much we *could* have improved it?  A “perfect” model would go all 

the way to 1 – we improved 100% of what we could have improved, 

or we achieved complete perfection in the unconstrained model’s Log-

Likelihood.  This happens as LnLikelihood, Full →0  !!!!

• “McFadden” R-squared or “Pseudo R-squared”:  

1-(LnL (Unconstrained)/LnL(Constrained)) = 1 – (-3.39/-6.18) = 1-.55=.45

We improved the log-likelihood by 45% through including X

• Alternative Calculation:  G^2/(-2*Ln(Constrained))=5.58/(-2*-6.18) = 

.45

• Model Chi-Square divided by -2 * LnL of Constrained Model or 

Model Chi-Square divided by Deviance of Constrained Model
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• “Adjusted” McFadden:  1-((LnL(Unconstrained)-K)/lnL(Constrained) ) = 

                                           1-((-3.39-2)/-6.18)=.128

    where k is number of parameters to be estimated

• Same logic as Adjusted R-squared – you can’t decrease McFadden by 

adding new variables, so there should be a penalty for too many IVs

• Adjusted McFadden will only increase if the LnL of the 

unconstrained model increases by more than 1 for each 

parameter added to the model
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• Another way to look at R-squared is the “Explained Variance in Y*”, 

the latent variable in the probit formulation.

• In OLS regression one calculates R2 as: 

• In probit, can get an analogue by estimating Var(Y*) as 

β2(VarX)+Var(ε)= β2(VarX)+1 and Var(   ) as β2(VarX) or Var(Y*)-1

 =((3.4829^2)*(.4301^2))/((3.4829^2)*(.4301^2)+1)

 = 2.24/3.24=.69 

• This is also called the “McKelvey and Zavoina R-squared”
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• Other measures of fit are based on the idea of “correct predictions” of 

Y.  Do we predict Y to be 1 when it is 1 and Y to be 0 when it is 0?  

These predictions are based on whether the probit or logit predicted 

probabilities are greater or less than .5

• Stata “lstat” shows .78 predicted correctly.  Seems good.  BUT:

• 5 cases are on 1, so we would predict .55 correctly by chance, or simply 

by predicting “1” for everybody.  Need to compare .78 to this.

• So can calculate (7-5)/(9-5) = 2/4 = .50 as the “Adjusted” Count R2

• (Total Number of Correct – Correct Predictions from 

Marginals)/(Total Number of Cases – Correct Predictions from 

Marginals).  This is Adjusted Count R2 .  VERY IMPORTANT!!!!
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• Alternative measure proposed by Danish statistician Tue Tjur (2009).  

It is based on the simple logic that a good model will produce high 

predicted probabilities for the cases where P(Y=1), and low predicted 

probabilities for the cases where P(Y=0).

• So take the difference between the average predicted probability for 

cases where P(Y=1) and cases where P(Y=0)

• Tjur’s R-squared or Tjur’s D”, the  “Coefficient of Discrimination”:

• Simple!  It is intuitive, and Tjur (2009) shows that it has many 

attractive properties.  One of them is being (asympotically) very close 

to the squared correlation between actual Y (1 or 0) and the predicted 

probability that Y=1, another common measure of R-squared

PS2730-2021 MLE-CatLimModels Week 2

D = p1 -p 0

where pY =P(Y=1|XB) for Y=1,0



• Final kind of summary statistic: “entropy-based measures” which 

can be used to compare models that may or may not be nested

• Idea is that log-likelihoods of models, relative to their degrees of 

freedom, provide general indication of “fit”; we can compare some 

summary quantity (like a modified “deviance”) from one model to 

another and decide which to prefer

• Akaike Information Criterion (AIC)

• First term in the numerator is the Deviance of the model, second 

term is the penalty for the number of parameters

• We want *smaller* values for AIC; that indicates less deviance and 

better fit
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AIC =
-2ln L(M )+ 2(k +1)

N



• Bayesian Information Criterion (BIC) compares two models in terms 

of their relative probability or likelihood, given the data.  We prefer M2 

over M1 if the ratio of P(M2|Data) is greater than P (M1|Data)

• For comparing M2 to a saturated M1 model (with 0 Deviance):

𝐵𝐼𝐶 = 𝑑𝑓 𝑀2 ∗ ln 𝑁 − 2𝑙𝑛𝐿(𝑀2)

• This value can then be calculated for any other model (M3) and 

compared to M2:  BICm2 - BICm3  with smaller (more negative) values 

preferred

• Our example:  BIC(Unconstrained) = 11.18 BIC (Constrained) = 14.56

• Rule of thumb (Long, p. 112):  absolute differences between models 

should be greater than 5 to provide “strong” evidence in favor of one or 

the other.  So we are not sure our model is “better” according to BIC, or 

at least not “strongly” better
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Summary Model Goodness of Fit Measures with “Fitstat”
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Summary: R-squared in Models with Discrete Outcomes

• Reduced Error Variation (the analog of (1-SSE)/SST)=

     1-(LnLfull-LnLreduced)

– McFadden’s R-squared or Adjusted McFadden’s R-squared

• Explained Variation in Y* (in probit):  

– McKelvey-Zavoina’s R-squared

• Accuracy in Prediction of Y

– Percent Predicted Correctly, Count R-squared, Adjusted Count R-squared

– Tjur’s R-squared or Coefficient of Discrimination

• Entropy-based measures for possibly non-nested models:  AIC and BIC
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Var(Y*)-1

Var(Y*)
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