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Modeling a Binary (Dichotomous) Dependent Variable

• With a dichotomous dependent variable (coded as 0/1),we model the probability 
that Y=1, or P(Y=1).  This follows from the idea of regression as modeling the 
Expected Value or the conditional mean of Y, given the Xs:

• This means that the average value of Y, given the Xs, is a linear function of the Xs.

• What is the “Average” Value of a Dichotomous Variable?

• If you have J cases on 1 and N-J cases on 0, then:

• Which is equal to the proportion of cases on 1, or the probability that Y=1, or 
P(Y=1)
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• More formally, dichotomous dependent variable models are 

based on the Bernoulli distribution, which is the discrete 

probability distribution for a binomial variable in a single trial.  

(In multiple trials the “binomial distribution” represents the 

number of “successes” (1) in a sequence of independent trials.)  

The single-trial outcome for Y is distributed as:

Where 𝛑 is P (Y=1).  So in a Bernoulli distribution we observe 

the 1s with a P(Y=1) of  𝛑 and the 0s with a P(Y=0) of 1- 𝛑 .

The goal for dichotomous DV models, then, is to model  𝛑 or 

P(Y=1) as some function of the independent variables
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• An initial formulation would borrow directly from the linear 

regression model:

• This is called the “Linear Probability Model,” (LPM) as we 

assume that P(Y=1) is a linear function of the Xs – the effect of 

a unit change in X will have the same effect on P(Y=1) 

regardless of where on X the change takes place.

• This is just a regular old regression with the 0/1 Dichotomous 

variable as the dependent variable, predicted from a series of X 

independent variables

• Interpretation:  For every unit change in X, the probability of Y 

being equal to 1 increases on average by β units

P(Y =1| X ) = p = XB

in the bivariate case:

P(Y =1| X
1
) = p = b

0
+ b

1
X

1
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The Linear Probability Model (LPM)
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Estimating the LPM

• Can we estimate the LPM with OLS?

• Error Term is odd:  at any value of Xi, there are only 2 values for ε

– If Y=0, then 0=XB+ε, and ε = -XB

– If Y=1, the 1=XB+ε, and ε = 1-XB

– So ε is not normally distributed

– But with large N that still will not adversely affect estimation

• OLS would still be unbiased, no reason to think that, on average, 

E(ε)≠0, nor that E(Xε)≠0 (i.e., no reason to suspect endogeneity 

simply on the basis of the model choice itself)

• However, OLS will be inefficient, as there is intrinsic 

heteroskedasticity in the model

• You can see this from the graph:  there is greater error variance at 

middle values of P(Y=1) than when P(Y=1) is very large or very 

small
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• This corresponds to the variance of a dichotomous (Bernoulli) 

variable, which is P(1-P), or  𝛑 (1- 𝛑 ).  

• So: Var(ε)=Var(Y|X)=P(Y=1|X)(1-P(Y=1|X)=XB(1-XB)

• This quantity is largest when P(Y=1|X)=.5, as can be seen from the 

graph, and will be small when, e.g. P(Y=1|X)=.1 or .9

• This problem can be overcome with a Weighted Least Squares 

procedure attributed to Arthur Goldberger in the 1960s

• Steps in Goldberger WLS

– Estimate the LPM with OLS, generate the predicted probabilities

– Calculate weights as 

– Run a weighted regression as:

– Variance of this new error term is 1, so homoskedastic
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Problems with LPM

• Possible predicted P(Y=1) outside of the 0-1 range of logical 

probabilities.  There is no constraint or bound on Y in the LPM

• This affects the first stage of Goldberger’s WLS procedure also, and 

would invalidate the construction of w for any case with Y-hat greater 

than 1 or less than 0, since there would a negative value in the 

denominator of w (no square root possible)

• Most important: theoretically it may not be the case that X has a 

constant effect on P(Y=1), rather there may be marginal decreasing 

effects on X as the prior P is very high or very low (e.g., one 

additional year of graduate school has less effect on voter turnout 

than changing from no high school degree to one year of college).  

• This is an issue with the functional form of the LPM
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So we want a model that has a non-linear functional form of the 

effects of X on the P(Y=1) or 𝛑, where:

– the P(Y=1) are bounded by 0 and 1

– the Xs are unbounded, i.e., can take on any value

– the effects of the Xs are greater at middle levels of the distribution than 

at the tails

   This is the justification for using the LOGISTIC FUNCTION -- or 

some other “sigmoid” function (“S-shaped”) such as the cumulative 

standard normal distribution, as in probit analysis -- as the basic 

functional form of a binary or dichotomous variable model 
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The (Cumulative) Logistic Function
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The Logit Model

P(Y =1| X ) =
exp(XB)

1+ exp(XB)
=

1

1+ exp- XB

So as XB goes to ∞, P(Y=1) goes to 1 but never gets there;

as XB goes to -∞, P(Y=1) goes to 0 but never gets there;

when XB is 0, P(Y=1)=.5.

So we have a perfectly symmetrical but non-linear functional form 

with the nice theoretical properties we wanted
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Estimation of the Logit Model

• It can be shown that the probability of Y being “0” or              

(1-P(Y=1))  =

•  Given this, we can construct the quantity P(Y=1)/P(Y=0)         

-- what is called the “odds” of Y being 1 -- as:

1
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• And taking the natural logarithm of both sides (to the base “e”) gives:

  

 We call the log of the odds that P(Y=1) the “logit” of Y, and so we 

can say that the logit model is linear in the logits, such that an increase 

of a unit in X produces a constant change in the logits, but is non-

linear in the probabilities (and odds).  This is how we interpret the 

estimated β effects, as linear effects of a unit change in X on the 

change in the log-odds that P(Y=1).

(But P(Y=1) and X are *not* linearly related – IMPORTANT!)
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Example of Logits and Probabilities

• DV:  Dichotomized Local-level Political 

Participation (YES/NO)

• If no group memberships

– Probability = .286

– Odds = .286/.714=.40

– Log-odds (logit)= ln(.40) = -.92

• If 5 groups

– Probability=.825

– Odds=.825/.175=4.714

– Log-odds (logit)=ln(3.35)=1.55

• All log-odds (logits) less than 0 mean 

probabilities less than .5 (and odds <1)

• All log-odds (logits) more than 0 mean 

probabilities greater than .5 (and odds>1)

• Logistic regression models the logits as a 

linear function of the Xs, using maximum 

likelihood estimation methods
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• The logit coefficient here for the effect of “group memberships” on 

“engaged in local participation” is .54.

• This means:  for every additional group membership, the log-odds, 

or logit, of local participation changes, on average, by .54.

• This is a constant linear effect – it is the same when changing from 

0-1 exposures, 1-2, 2-3, 3-4, etc.
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• To convert into probabilities:  we take the predicted logit for an 

individual with a given value of X, and plug it into the P(Y=1) 

expression for the logit model:

• So when X=0, the predicted logit: -.96  exp(-.96)/(1+exp(-.96))= .28

                    X=1, the predicted logit:-.42 exp(-.42)/(1+exp(-.42))=.40

         X=4, the predicted logit: 1.21 exp(1.21)/(1+exp(1.21))=.77

                    X=5, the predicted logit: 1.75 exp(1.75)/(1+exp(1.75))=.85

• A unit change in X from 0-1 leads to a .12 change in predicted P(Y=1)

     A unit change in X from 4-5 leads to a .08 change in predicted P(Y=1)

 Same unit change in the logit, different unit change in the P(Y=1)!!
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The Latent Variable Approach to Modeling 

Binary Dependent Variables

• Derivation of the logit model was done so far from the need for a 

non-linear probability model that was bounded by 0,1 with no 

bounds on the Xs

• Another way of deriving the non-linear functional form for 

predicting 0,1 dependent variable is based on the “latent variable 

approach”.  This usually ends up with the “probit” specification 

which makes use of the normal distribution (though one could also 

specify a logistic distribution using this approach and arrive again at 

the logit model)
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• Idea is that you have a 0,1 observed variable:  vote or not vote; protest or 

don’t protest, war/no war but there is an underlying, latent “propensity”  to 

vote, to protest, to go to war which is a continuous, unobserved variable.  

• So can imagine that the latent “propensity” variable might run from negative 

infinity to infinity, and that there is some threshold point beyond which we 

observe a voter, a protester, or a conflict.  So can view the observed 0,1 

variable as mapped from a continuous latent, unobserved variable that 

has no bounds.

• This also fits the notion of “Expected Utility” models of behavior 

perfectly:  the utility derived from one behavioral choice versus another can 

be infinitely negative or positive, and at the threshold of (for example) zero 

you observe behavior “1”, and below the threshold you observe behavior “0”

• Many discrete choice models we’ll examine relating to ordinal and 

multinomial outcomes are derived from this framework
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• Model:

• Y* is a continuous unobserved variable.  It is mapped to the observed 

dichotomous variable Y through a “measurement equation” that 

says if Y* is above a certain threshold τ, then the observed Y will be 

1; if Y* is below the threshold, then observed Y will be 0

• Assuming τ to be 0 (following the logic above), then
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• Y* is unobserved, so we can’t estimate with OLS.  We use ML methods, which 

we will introduce next time.  For now, need to make some assumptions about the 

error term ε in this model in order to identify the model parameters

• Assume that ε is a standard normal variable with mean of 0 and variance of 1

• This identifies the variance of Y*, which is unobserved.  (And we can arbitrarily 

make this assumption with no substantive implications – it only changes the 

relative value of the regression coefficient but not the substantive relationship, 

though there are some potentially problematic implications we’ll discuss)

• So ε~N(0,1)

• We could also say that ε is distributed logistically.  Then var(ε)=π2/3
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The Standard Normal Distribution

• This is a graph of the probability 

density function or pdf of the values 

in a standard normal variable.

• On the X axis is the “z-score” of any 

normally distributed variable 

• The f(x) gives you the height, or 

“pdf” of the curve at any given point 

or X value (z-score) on the variable

• There is actually not a probability 

value associated with observing X at 

any single discrete point since this is 

a continuous function, but there are 

probabilities associated with 

observing Xs between two points on 

the pdf
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The Cumulative Normal Distribution Function

• The cumulative normal distribution function 

(the “cdf”) gives the proportion of the 

standard normal curve at or below a given 

value

• So a z-score of 0 corresponds to a cdf of .5; 

this means that .5 of the normal curve is at or 

below a z-score of 0

• A z-score of -1 corresponds to a cdf value of 

.16, or 16% of the function

• A z-score of 1 corresponds to a cdf value of 

.84. or 84% of the function

• These cdf values correspond also to the 

cumulative probabilities of observing 

values in the distribution at or below the 

given value.  So a z-score of 1 has a 

cumulative probability of .84, e.g.

• We represent this as, e.g., Ф(0)=.5

• Ф(-1)=.16  Ф(1)=.84 16  Ф(.5)=.69
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• Back to our probit derivation.  Assuming normally distributed errors in the equation for Y*:

• Can see that sometimes, for a given level of X (and thus a given value of predicted Y*), the 

person will have an observed value of 1 if the error term is sufficiently large to push her over the 

threshold τ (0).  If not, we observe 0.

• Can also see that the probability of obtaining an error term large enough to push a person over 

the threshold is greater, as X increases (given the positive relationship here between XB and 

Y*).  When X=3, e.g., it will be very unlikely to get an error sufficiently negative to push the 

person under the τ (0) threshold, so the probability of observing a 1 will be very high

• But even if Y* is very low (high), there is still a chance that a very high (low) ε leads to an 

observed 1 or 0.

• With the assumption of a normally distributed error term, can calculate the probabilities exactly!
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The Probit Model

• So the probability that Y=1 is equal to the probability of obtaining an 

error term greater than –XB, which will push (or keep) the person 

over the threshold of 0

• If XB puts the person at -1, for example, we will observe a “1” only if 

the error term is greater than 1, which would make Y* greater than 0.  

• Given normal curve probabilities, we know that will happen with .16 

probability.  (How?)

• If XB puts the person at 1, we will observe a “1” if the error term is 

greater than -1.  We know that will happen with .84 probability
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• We want to know the probability that ε>-XB|X

• Notice, though, that the probability of observing an error term 

greater than –XB is the same as the probability of observing an 

error term less than XB; this follows from the symmetry of the 

normal distribution

– For an XB of 1:

• Probability that ε>-1 (from previous slide) is .84

• Probability that ε>1 (from previous slide) is .16, so Probability that ε<1 is also .84

– For an XB of -1.5:

• Probability that ε>1.5 is .064

• Probability that ε>-1.5  is .934, so Probability that ε<-1.5 is .064

• So Probability that ε>-XB= Probability that ε<XB =  Ф(XB)

• So the Probability of obtaining an error term greater than -XB – 

which will push Y* above the threshold of 0 so that observed Y 

will be 1, is equal to the cumulative probability (or proportion of 

the cumulative normal distribution) associated with XB

• This is the probit model!  P(Y=1|XB)=P(ε>-XB)= Ф(XB)
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• The probit model for binary dependent variables:

• The probability that Y=1 is equal to 1 is equal to 

the cdf – the value of the cumulative normal 

distribution function – associated with the z-score 

quantity XB

• Probit is “linear in the z-scores” and non-linear in 

the probabilities, just like logit was “linear in the 

logits” and non-linear in the probabilities
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Examples of Probit XB and P(Y=1).  In STATA:  display normal(XB)

• Model:  Y*=-1+.2*X

– X=-1  XB=-1.2  P(Y=1)=Ф(-1.2)=.12

– X=0  XB=-1   P(Y=1)=Ф(-1)=  .16

– X=5  XB=0  P(Y=1)= Ф(0)=   .5

– X=10  XB=1   P(Y=1)= Ф(1)=   .84

• Change intercept to +1:  Y*=1+.2X

– X=-1  XB=-.8  P(Y=1)=Ф(.8)=.79

– X=0  XB=1   P(Y=1)=Ф(1)=  .84

– X=5  XB=2  P(Y=1)= Ф(2)=   .98

– X=10  XB=3   P(Y=1)= Ф(3)=   .99

• Change slope to .5:  Y*=-1+.5X

– X=-1  XB=-1.5  P(Y=1)=Ф(-1.5)=.07

– X=0  XB=-1   P(Y=1)=Ф(-1)=  .16

– X=5  XB=1.5  P(Y=1)= Ф(1.5)= .93

– X=10  XB=4   P(Y=1)= Ф(4)=   .99
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Summary of Logit/Probit Models

• These are both non-linear probability models bounded by 0 and 1

• In each case, though, something has a linear relationship to X as well

– Probit:  The Y and X relationship is linear in the z-scores

– Logit is linear in the log-odds

• We can go from probabilities to z-scores or log-odds and back again 

via the “inverse” of the P(Y=1) functions above 
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• This leads to a general approach to many probability 

models called “Generalized Linear Models” and 

unifies much of what we will do in the class

• Start with the assumed probability distribution for Y

• Some possible distributions we’ll consider: 

Normal (as in slide 21)

Binomial (number of successes y in n trials), or Bernoulli one trial

Poisson (number of occurrences in a specific time interval, given a rate 

parameter 𝜇):
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• Then, define a linear prediction as a function of the 

independent variables X

• Finally, relate the expected (mean) response probability (𝜇) or 

(𝝅) or P(Y=1|X) of the original distribution to the linear 

prediction via what is called a “link function” – i.e., go from the 

potentially non-linear response probabilities to the linear 

prediction

• Where the link “g” will differ depending on the probability 

distribution at hand, e.g. normal, binomial (Bernoulli), poisson, 

etc., but the general unifying principle is the same
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• Linear (identity) link:  𝑔 𝜇 = 𝑔 𝜋 = 𝜂 = 𝑋𝐵

• Logit link: 

                 𝑔 𝜇 = 𝑔 𝜋 = 𝑙𝑛
𝜋

(1−𝜋)
=𝜂 = 𝑋𝐵

• Probit link:

  𝑔 𝑢 = 𝑔 𝜋 = Φ−1 (π)= 𝜂 = 𝑋𝐵

• Poisson link: 

  𝑔 𝜇 = ln 𝜇 = 𝜂 = 𝑋𝐵
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• Can also go in the reverse direction, from the linear 

predictor to the mean response probability, via the 

“mean” function or the inverse of the link function

• Linear mean function:

• Logit mean function:

• Probit mean function:

• Poisson mean function: 
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• All these models have similar form: they conceptualize the 

effect of Xs on E(Y) with a linear component in the Xs, and 

then some link between that linear component and the 

potentially non-linear E(Y|X)

• All estimated via ML methods we’ll consider next time

• All unified under the GLM routine in most software packages 

(Stata, R, e.g.)

• Specification:  distribution (binomial, e.g.); link function (logit 

or probit, e.g.)

• Sometimes will estimate two parameters:  mean and variance 

of the response distribution

• Can further generalize the GLM to analysis of multilevel and 

longitudinal data, adding random effects in 𝜼 at higher levels of 

the data hierarchy to account for clustering, as we will see later 

in the course
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