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SEM:  A General Analytic Framework
• Also referred to as “covariance structure analysis “(CSA)
• Method for analyzing systems of equations, how a series of variables may relate 

together or influence one another, either in a unidirectional causal sense or 
in a more complex models of “reciprocal” causality

• Present a system of equations that represents the causal linkages between 
variables, so that the model shows all ways that the variables are related.  By 
estimating the parameters in the model as a whole, as opposed to equation by 
equation, we gain information to test more complex models

• 1960s-90s: one of the dominant methods in all of quantitative social 
science.   Now other methods compete with SEMs, but still remains a 
major part of methodological toolkit for longitudinal and other analyses

• Enjoying a recent renaissance
– “Directed Acyclic Graphs” (DAGs) and the approach to causality outlined by Judea 

Pearl (2000) and followers
– Multilevel Structural Equation Models (MLSEM) in Psychology developed by Muthén, 

MacKinnon, Preacher and others
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Example:  Miller and Stokes (1956) Model of 
Congressional Representation

Congressperson’s
Perception of
District Opinion

District Roll Call
Opinion Voting

Congressperson’s
Own Opinion

Illustrates features of SEMs:
• System of Equations:  here modeling 

three different DVs
• Exogenous versus Endogenous variables 

(as opposed to Independent versus 
Dependent variables)

• Direct versus Indirect Causal Effects
• Recursive versus Non-Recursive Models
• Identification of model parameters:  is 

there enough information in the 
model to estimate all the coefficients 
of interest?

Longitudinal Analysis Week 5 3



SEM and Longitudinal Analysis:  A Natural “Fit”
• Multiple waves of observations means equations for each DV in each time 

period, so can conceive of longitudinal models as systems of equations over 
time

• Interest in much longitudinal research is in modeling reciprocal effects 
between variables, so SEM methods useful

• Similarly, interest in much longitudinal research is in modeling relationships 
between variables that are “purged” of measurement error, and SEM methods 
are probably the best available for this purpose

• Interest in much longitudinal research in causal mediation and the separation 
of direct and indirect effects, so SEM methods also ideal (e.g. joining groups 
leads to more civic skills which then feeds into more participation)

• SEM can be used for “Latent Growth Modeling”; this represents one 
integration of SEM with other longitudinal modeling methods. More general 
Multilevel SEM models for longitudinal data are also possible, and we’ll cover 
some later in the course
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Example: A Simple Longitudinal SEM

• One variable, say Party Identification , influencing itself  over 3 waves (“autoregressive 
model”)
• Two equations, one predicting PID in wave 2, one predicting PID in wave 3
• Two endogenous variables (PID2 and PID3), one exogeneous variable (PID1)
• It is a recursive model, since no causal “feedback” effects between variables
• β1 and β2 are the “structural effects” linking PID in waves 1-2 and 2-3.  They are 
sometimes in longitudinal models called the “stability” effects
• ε1 and ε2 are the “disturbance” or “error” terms, unobserved influences and 
idiosyncratic errors that predict PID in waves 2 and 3
• If  we express all variables as deviations from their respective means, there is no need 
for an intercept term in the Y2 or Y3 equations (this can be modified)

Y1 Y2 Y3

ε1 ε2

β1 β2
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How to estimate the structural parameters in this model?
• Run two regressions, one endogenous variable at a time.  This is always 
possible and will give you the same estimates in simple recursive models as SEM 
methods (i.e., whenever models have no measurement error, no correlated 
disturbances, and no feedback effects). 
• Use SEM methods, which uses all the information that is given in the  
data (i.e., the variances and covariances of all the observed variables), and  
generates estimates of individual structural coefficients as well as tests of  
the “fit” of the model as a whole to the data

Y1 Y2 Y3

ε1 ε2

β1 β2
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SEM estimation procedure (non-technical version)

1. Express the variances and covariances of the observed variables in 
terms of the unknown structural effects of the model

2. Manipulate the variances and covariances of the observed variables 
to arrive at estimates of the model’s unknowns.  That is, we solve for 
the unknowns in terms of the known variances and covariances. 

3. If models are “overidentified,” i.e., more knowns than unknowns, 
we can generate predictions about the variances and covariances that 
must be true if the model is correct.  We then compare the predicted 
and actual values of the variances and covariances:  if they are the 
same, we say the model “fits” (or “is consistent with”) the data; if 
they are not the same, we “reject” the model as a whole.

4. “Rejected” models then are revised; models that “fit” may or may 
not be accepted, however.  Many different models may produce a 
good fit to the data.  Theory is always relevant!!
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SEM analysis is also called “Covariance Structure Analysis” or 
CSA:  we use the observed variances-covariances to estimate 
structural parameters and we use the estimated structural 
parameters to generate predicted variances and covariances, 
which we then compare to the actual ones in assessing how 
well the model “reproduces” the observed data.  Very dialectic!

So with SEM we move from a world where we care only about 
regression coefficients and the fit (R2) of a particular equation 
to a world where we care both about regression coefficients  
(structural effects), R2, *and* assessing the overall “fit” of a 
given model
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How do we do this?  A Simple Example

• What are the “knowns” in this system?  The observed 
covariances between PID at time 1 (Y1), PID at time 2 (Y2), 
and PID at time 3 (Y3)

• If we standardize the variables (i.e. mean of 0, s.d. of 1), we will 
have a correlation matrix between the 3 variables with values of 
1 on the diagonal, and the correlations between PID1-PID2, 
PID1-PID3 and PID2-PID3 in the off-diagonal cells.  There 
will be 3 distinct pieces of information in the observed 
correlation matrix

(1)   Y2 = β1Y1 + ε1

(2)   Y3 = β2Y2 + ε2

with assumptions E(ε1ε2 ) = E(Y1ε1) = E(Y2ε2 ) = 0
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Step 1:  Express Variances-Covariances (Correlations) in 
Terms of Unknown Parameters

• How do we do this?  Some basic covariance algebra
• Example:  Multiply both sides of equation (1) by Y1 and take 

expectations (i.e., the long-run “average” for population)

  

Ε(Y1Y2 ) = Ε(Y1(β1Y1 + ε1))
Ε(Y1Y2 ) = Ε(β1Y1Y1 +Y1ε1)
Cov(Y1Y2 ) = β1Var(Y1Y1)+Cov(Y1ε1)
Cov(Y1Y2 ) = β1

(1)   Y2 = β1Y1 + ε1

(2)   Y3 = β2Y2 + ε2

with assumptions E(ε1ε2 ) = E(Y1ε1) = E(Y2ε2 ) = 0
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Rules of Mathematical Expectations

“the expectation of a constant is the constant”

“the expectation of a constant multiplied by a variable is the 
constant multiplied by the expectation of the variable”

“the expectation of a variable multiplied by itself is the 
variable’s variance; the expectation of a variable multiplied 
by another variable is their covariance”

“the expectation of constant plus a variable is the 
constant plus the expectation of the variable”

“the expectation of the sum of two variables is equal to the  
sum of the two expectations”

 1) Ε(a) = a  

  2) Ε(aX) = aΕ(X )  

  4) Ε(a+X)= a + Ε(X ) 

 5) E(X+Y)=E(X)+E(Y)  

  

3) Ε(XX) = Var(X )
    E(XY) = Cov(XY)  
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• So our model implies that the observed covariance 
(correlation here, given standardized variables) between PID 
at time 1 and 2 is equal to β1

• Our estimate of the model’s structural parameter β1, then, is 
going to be [r(Y1Y2)]

• This is the SEM version of the fact that, in a standardized 
bivariate regression model, the regression coefficient is 
equal to the correlation coefficient between X and Y

• Carrying out the covariance algebra in this system of 
equations also generates:

• Corr(Y2Y3)=β2 and Corr(Y1Y3)=β1β2
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Observed Versus “Implied” Correlations

  

Y1 Y2 Y3

Y1 1

Y2 r(Y1Y2 ) 1

Y3 r(Y1Y3) r(Y2Y3) 1

 

1
β1 1

β1β2 β2 1
Correlations 
Implied by 
the Causal 
Model

Observed 
Correlations
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Step 2: Solve for unknown structural parameters
• What are unknowns? β1 and β2

• Easy to solve for each:
β1 = r(Y1Y2)
β2 = r(Y2Y3)

• These are two bivariate regression equations, so in 
standardized form, the estimate is equal to the 
correlation between the IV and the DV

• Multivariate and other more complex models, of course, 
will have more complex solutions for each unknown, but 
the principle will be the same

Longitudinal Analysis Week 5 14



Step 3:  Assess Model Fit
• After solving for β1 and β2 , can assess “fit” for each equation with 

tradition measures like R-squared, etc.
• But with SEM, can also test --- under some conditions – whether the 

model as a whole fits the observed data, i.e., do the estimates produced 
from the algebraic manipulations from previous slide successfully 
reproduce the observed variances and covariances? 

• In this case, we can test the model. We see that the model makes the 
following prediction:  Corr(Y1Y3)=β1* β2

• So we solve for β1 and β2 and then generate a prediction for Corr(Y1Y3).  
If it is close (given sampling error), then the model is “consistent” with 
the data; if not, we reject the model and say that it needs to be modified. 

• More general test of the model : Y1 and Y3 are conditionally independent, 
given Y2 , or [rY1Y3 |Y2 )=0].  This doesn’t require estimation of any β, so 
allows the relationships to follow any functional/parametric form
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“Overidentified” Models

• Assessing model fit is only possible when models are overidentified, 
when there are more knowns than unknowns.  In our case we 
have 2 unknowns (β1 and β2) and 3 correlations, so the model is 
overidentified.  Technically we say that the model has 1 “degree of 
freedom”.

• When models are “just-identified”, there are an equal number of 
knowns as unknowns, and the model estimates will reproduce he 
observed data (correlations) exactly.  Also known as a “saturated” 
model

• When models are overidentified, they will not necessarily 
reproduce the observed data exactly, thus giving us the “degree(s) 
of freedom” to test the model. 
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• Another way to look at it: there are actually two ways of 
arriving at β2

– One is our original estimate:  r(Y2Y3)
– Another is (following covariance algebra multiplying equation 

for Y3 by Y1) :
r(Y1Y3)/ r(Y1Y2)

• So the test of whether the two estimates are the same, 
given sampling error, is whether:

r(Y2Y3)= r(Y1Y3)/ r(Y1Y2)
– If so, the model is consistent with the data. If not, reject the 

model as specified and need to modify or abandon it
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Example:  
National Election Panel Study, 2000-2002-2004

Stability of Party Identification

 

1
.872 1
.856 .884 1

Observed

Implied

 

1
β1 1

β1β2 β2 1
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Estimates and Model Fit
– β1 = r(Y1, Y2) = .872
– β2 = r(Y2,Y3) = .884

– Does the model “fit” the data?
– Predicted r(Y1 Y3)=β1β2=.872*.884=.771
– But observed r(Y1 Y3) =.856, so our model is “wrong” 

(without considering sampling error)
– Alternatively: 
β2= r(Y1 Y3) / r(Y1 Y2) =.856/.872=.98 
A much different from the earlier estimate of .884

– What is wrong with the model?  No direct effect from   
PID2000 à PID2004 (probably, but could be other omissions)
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Alternative Model: Include direct effect of PID2000 on PID2004

Y1

Y2 Y3

ε1 ε2

β1
β2

β3

  

Y1 Y2 Y3

Y1 1

Y2 r(Y1Y2 ) 1

Y3 r(Y1Y3) r(Y2Y3) 1

Observed Correlations

  

Y1 Y2 Y3

Y1 1

Y2 β1 1

Y3 β1β2 + β3 β2 + β1β3 1

Model Implied Correlations
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• This model has three unknowns (β1, β2 , and β3) and three 
knowns

• It is “saturated” or “just identified”, with 0 degrees of freedom.  In 
recursive models it means that no structural effects are left out of 
the model

• As noted earlier, you can’t test these models in terms of fit 
because the model will necessarily reproduce the observed 
variances and covariances exactly

• You can see that we are going to manipulate all of the 
correlations to obtain estimates of the three unknowns, and so 
we have no “excess” correlations with which we can test the fit 
of the model (like we did in the last model with Corr(Y1Y3 )

• We can say that the restriction that β3=0 in the previous model is 
what allowed us to test it – it is the “overidentifying restriction” 
of that model
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Maximum Likelihood Estimation of SEM Models

• Basic idea:  Find the parameters that generate the implied population 
variance-covariance matrix (    ) of the observed variables that comes 
as close as possible to the actual variance-covariance matrix S.  Those 
parameters then maximized the likelihood of having observed the variance 
covariance matrix we did observe

• Test significance of individual coefficient estimates
• Use summary statistics to evaluate the fit of the model as a whole:
• Modify and compare alternative models, especially models “nested” 

within one another, i.e., with same variables and structure aside from 
one or more constraints on parameter values in a “reduced” versus a 
“full” model

Σ̂
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How to Estimate SEM Models via ML?

• Two matrices:
S  = Observed variances and covariances in our sample, which was 
randomly drawn from a population with variances-covariances Σ

= Implied variances-covariances based on unknown model parameters 
(in our case β and the variances-covariances of the ε errors; if the 
variables are not standardized then there are also variances of the 
individual variables to take into account, i.e., the diagonal elements of  
which are all 1 in a standardized model)
• THE METHOD OF MAXIMUM LIKELIHOOD FINDS THE 

VALUES OF THE UNKNOWN MODEL PARAMETERS 
THAT, TAKEN TOGETHER, MINIMIZE THE 
DIFFERENCE BETWEEN THE VALUES OF  S AND 

Σ̂

Σ̂
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Implied Variance-Covariance Matrix:  
3 Wave Autoregressive Model (with Unstandardized Variables)
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β2
2β1

2φ1 + β2
2ϕ1 +ϕ2

β2β1
2φ1 + β2ϕ11 β1

2φ1 +ϕ1

β2β1φ11 β1φ1 φ1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

             Y3                        Y2           Y1

Notes:
• Matrices usually ordered from latest to earliest waves and from endogenous to exogenous 

variables
• Variances of  endogenous variables’ error terms (ε) denoted with Greek “psi” ψ
• Variances of  exogenous variables denoted with Greek “phi” φ
• Effects of  exogenous variables onto endogenous variables typically denoted with Greek 

“gamma”γ; Y1 in this example is exogenous so (technically) β1 is really γ1

• Stata and other SEM programs’ output will have “Gamma” and “Beta” matrices to distinguish 
these effects

Σ̂ =
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• ML Estimation:  What values of                        will produce the       
that is “closest” to S?

• When models are “just-identified” or “saturated,” the algebraic 
manipulation of S will produce one unique estimate of each of the 
unknown parameters, and hence the implied       will reproduce S 
exactly

• But when models are “overidentified,” there will be several, 
perhaps many different ways of manipulating to produce the 
unknown parameters, and hence there is a need for some 
estimation procedure to “combine” or find the “best” estimates.

β2 ,β1,φ1,ϕ1,and ϕ2

Σ̂

Σ̂
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• Technically:
• ML estimates are those that minimize a fit function (call it F) that 

expresses the deviation between      and S as:

where the first and third terms are the “determinants” of      and S, respectively, 
tr is the “trace” of a matrix, and t is the total number of variables in the model.  
ML estimates are produced via iterative processes, where initial values are 
adjusted, recalibrated, etc. until no “better” estimates can be produced.  
• If you are interested in learning about different algorithms used in ML 

estimation of this sort, see Kenneth Bollen, Structural Equation Models 
for Latent Variables (John Wiley and Sons, 1989),  pp.131-144.

• When    and S are equal, F will be 0, so the goal is for F to be as small 
as possible. It will be 0 only when the model perfectly reproduces S, 
e.g. with a saturated model. 

Σ̂

  

F = log
^

Σ + tr S
^

Σ

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
− log S − t

Σ̂

Σ̂
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Results From Our Example

• For Matrix A with elements

• Our        (from STATA post-estimation command “estat framework, 
fitted”)

• det(    )=6.49

Σ̂

Σ̂
                                                   
         pid2000    3.865864   4.106447   4.675995 
         pid2002    4.468679   4.746776            
         pid2004     5.42207                       
    observed                                       
                                                   
           Sigma     pid2004    pid2002    pid2000 
                   observed                        
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• Our S (from Stata command “corr pid2004 pid2002 pid2000, cov”)

• det(S )=5.63
(http://ncalculators.com/matrix/matrix-determinant-calculator.htm)

• The trace of a matrix is simply the sum of the diagonal elements.  In the 
case of         we would divide the diagonal elements of S by the diagonal 
elements of       and sum the three terms.  In our case, since we reproduce 
all of the diagonal variances exactly with our model, we have values of 1 on 
the 3 diagonals, so the trace of this matrix is 3. Then we subtract t, which is 
also 3 for the number of variables, so we see that the second and fourth 
terms of the equation for F cancel out in this case.

• So:    F = log (6.49) – log (5.63) = 1.87-1.728= .142

S
Σ̂

Σ̂

     pid2000    4.30129  4.11152  4.68177
     pid2002     4.4742  4.75264
     pid2004    5.42877
                                         
                pid2004  pid2002  pid2000
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Testing Model Fit
• H0:  The covariance matrix in the population is equal to      , the covariance 

matrix implied by our model. (Informally:  our model “fits” the data, taking 
sampling error into account)

• HA:  The covariance matrix in the population is equal to “any arbitrary 
matrix”, and if it is arbitrary, we will pick S when maximizing the likelihood 
function.  (Informally:  no “model” at all is needed to estimate, only our 
sample variances and covariances). 

• So under each of these two hypotheses, we can generate a (log) Likelihood 
function that summarizes the overall likelihood that the specified model 
holds in the population.  We can then test H0 by comparing the ratio of the 
two (log) Likelihoods.

• The ratio of the two log Likelihoods (the “Likelihood Ratio Chi-Square,”) is 
equal to (N-1)*F, and is distributed as a χ2 statistics with degrees of freedom 
equal to ((t(t+1)/2) – k), where t is the number of variables, and k is the 
number of unknown parameters in the model.  Here we have 6 knowns and 
5 unknowns, so df=1.  

Σ̂
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• This means that the Likelihood Ratio chi-square (call it L2) can be 
used as a statistical test of the null hypothesis that the specified model 
holds in the population.  

• Note that this is fundamentally different than other null hypotheses 
you have encountered, where the null represents NO relationship or 
no effect from one variable to another.  Here our null is that the 
model fits the data, and we therefore DO NOT want to reject it.  So 
large Likelihood ratio chi-square values means we reject the null and 
our model does not fit the data, or is “inconsistent” with the data.

• Our example:  (N-1)*F, the “Likelihood Ratio Chi-square.”  Here it is 
809*.142 = 115.0 (close enough to the 117.9 from STATA output).  With 1 
degree of freedom, the statistical significance of this figure is extremely high, 
that is, it was very unlikely to have come about by chance sampling error.  
So we can say that the deviations between        and  S are “statistically 
significant”, that is, there is a significant difference between our model’s      

and the true population covariance matrix     .  
• This means our model is “inconsistent with the data.”

Σ̂ Σ
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Testing Alternative Models
• The same logic can also be used to test the statistical significance of any improvements 

in model fit associated with relaxing model constraints, that is, in comparing the fit of 
two different models.  

• Suppose we relax the constraint that  β3 = 0. Whenever one model can be arrived at 
by imposing one or more constraints on another model, we say that the model is 
“nested” in the other model.  In such cases, the difference in χ2 between the two 
models itself follows as χ2 distribution, and the improvement in fit can be tested 
according to whether the difference in χ2 is statistically significant, given the 
difference in degrees of freedom (or the number of imposed constraints) between 
the two models.

• In this case:  
“Constrained” Model (where  β3 = 0:  χ2 = 117.9. w/ 1 df
“Unconstrained” Model (where β3 is a free parameter):  χ2 = 0 w/ 0 df
χ2 Difference (Constrained – Unconstrained) = 117.9 df Difference=1
χ2 Difference is statistically significant and therefore the Unconstrained model
represents a statistically significant improvement over the Constrained model in terms of 
reproducing  S (or      ).Σ
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Notes on Model Testing and 
Assessing Goodness of Fit

1. In this case the “unconstrained model” is a saturated model but this need not 
be the case.  An “unconstrained model” is any model that relaxes one or more 
constraints on model parameters, and the difference in χ2 between the two 
models provides a test of the significance of the improvement in fit from 
relaxing the constraints.

2. It is also the case that this is the only kind of test that you can do with 
saturated models, that is, compare them to other models in terms of fit.  You 
cannot conclude anything about a saturated model in itself because the fit is by 
definition perfect.

3. An insignificant model χ2 or L2 does not mean that your model is “correct” 
or the “true” model. It is just “consistent with the data”.  There could be 
many models that reproduce the observed data as well as yours.   So a 
significant model χ2 or L2 means that the model is inconsistent with the 
data and can be rejected, but an insignificant χ2 or L2 does not mean the 
model is accepted as “the truth”.
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4. Since the Likelihood Ratio χ2 (L2) depends on N and F, you can in many 
instances increase the size of χ2 simply by increasing the number of cases in the 
analysis.  This means that the same degree of fit will “look worse” with a larger 
N, a somewhat perverse situation in social science, as we usually want to 
maximize the number of observations.  

5. Hence methodologists have come up with various ways of correcting L2.  
Sometimes the correction is done by dividing L2 by the degrees of freedom in the 
model, but no one knows how to interpret L2/df with any specificity.  It used to 
be said that “values approaching 2-3 are beginning to be reasonable”, but this is 
no longer accepted. 

One “chi-square correction” measure of fit that is very popular in the SEM
literature is the “Root Mean Square Error of Approximation” (RMSEA),:

which in this case is:  square root of 116.9/809=.38
It is desirable for this value NOT TO EXCEED .08 for models to be acceptable!!!

  
RMSEA =

χm
2 − dfm

(N −1)dfm
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6. Other measures of goodness-of-fit involve comparing the 
model chi-square in various ways to a very crude “baseline 
model” which has no parameters whatsoever and no covariances
between the observed variables – it just has variances of 
variables that are completely unrelated in the population.  (This 
is about as “baseline” as you can get!)

• Note the baseline model has 3 df since there are 3 observed 
variables ( i.e., 3 variances are estimated and that is it!)
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            p > chi2        0.000
          chi2_bs(3)     2484.410   baseline vs. saturated
            p > chi2        0.000
          chi2_ms(1)      117.941   model vs. saturated
Likelihood ratio      
                                                                            
Fit statistic               Value   Description
                                                                            



• We can calculate the extent to which our model improved on the 
baseline model via a proportional reduction in the chi-square value, or 
the Comparative Fit Index (CFI):

• So the CFI is (2484.4-117.9)/2484.4=.953
• Tucker and Lewis (1973) suggest correcting the CFI to take into 

account the relative degrees of freedom in the two models, so that 
near-saturated models are penalized to a greater extent:

which equals (828.1-117.9)/828.1=.857
• CFI and TLI should be greater than .90 and close to .95 if possible!!!!

TLI =
χb
2

dfb
− χm

2

dfm
χb
2

dfb −1

CFI = b

2

χ −
m

2

χ

b

2

χ
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7. Last measures of Goodness of Fit
A. The “Average” residual, or square root of the total squared 

(standardized) deviations between the observed and predicted 
covariances.  This is the “Standardized Root Mean Square 
Residual” (SRMSR) in STATA, and should not be above .08      
(some say .05) for model acceptability.  Here we obtain .028, so not bad.

B. “Information”-based measures. These are the only measures that do not 
depend on models being nested in one another.  Akaike’s Information 
Criteria (AIC) is:  

where L is the model’s log-likelihood (NOT CHI-SQUARE) and k is 
the number of estimated parameters.  Smaller numbers are better, so 
the 2*k term is a penalty for the expression as more parameters are 
estimated.  Used very often to compare models with different 
variables, structures, etc., and we will see this in later sections of the 
course as well.
Here AIC=(-2*-4204.89)+2*5=8420

  AIC = −2ln Lm + 2* k
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All STATA Goodness of  Fit measures from “estat gof, sta(all)”
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                  CD        0.760   Coefficient of determination
                SRMR        0.028   Standardized root mean squared residual
Size of residuals     
                                                                            
                 TLI        0.859   Tucker-Lewis index
                 CFI        0.953   Comparative fit index
Baseline comparison   
                                                                            
                 BIC     8449.966   Bayesian information criterion
                 AIC     8421.784   Akaike's information criterion
Information criteria  
                                                                            
              pclose        0.000   Probability RMSEA <= 0.05
         upper bound        0.439
 90% CI, lower bound        0.324
               RMSEA        0.380   Root mean squared error of approximation
Population error      
                                                                            
            p > chi2        0.000
          chi2_bs(3)     2484.410   baseline vs. saturated
            p > chi2        0.000
          chi2_ms(1)      117.941   model vs. saturated
Likelihood ratio      
                                                                            
Fit statistic               Value   Description
                                                                            


